RESUMEN
Two-dimensional materials are extraordinarily sensitive to external stimuli, making them ideal for studying fundamental properties and for engineering devices with new functionalities. One such stimulus, strain, affects the magnetic properties of the layered magnetic semiconductor CrSBr to such a degree that it can induce a reversible antiferromagnetic-to-ferromagnetic phase transition. Using scanning SQUID-on-lever microscopy, we directly image the effects of spatially inhomogeneous strain on the magnetization of layered CrSBr, as it is polarized by a field applied along its easy axis. The evolution of this magnetization and the formation of domains is reproduced by a micromagnetic model, which incorporates the spatially varying strain and the corresponding changes in the local interlayer exchange stiffness. The observed sensitivity to small strain gradients along with similar images of a nominally unstrained CrSBr sample suggest that unintentional strain inhomogeneity influences the magnetic behavior of exfoliated samples.
RESUMEN
We report an electrochemical method for doping two-dimensional (2D) superatomic semiconductor Re6Se8Cl2 that significantly improves the material's electrical transport while retaining the in-plane and stacking structures. The electrochemical reduction induces the complete dissociation of chloride anions from the surface of each superatomic nanosheet. After the material is dehalogenated, we observe the electrical conductivity (σ) increases by two orders of magnitude while the 3D electron carrier density (n3D) increases by three orders of magnitude. In addition, the thermal activation energy (Ea) and electron mobility (µe) decrease. We conclude that we have achieved effective electron-doping in 2D superatomic Re6Se8Cl2, which significantly improves the electrical transport properties. Our work sets the foundation for electrochemically doping and tuning the transport properties of other 2D superatomic materials.
RESUMEN
Since their first observation in 2017, atomically thin van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention. However, their low ordering temperatures, Tc, sensitivity to atmospheric conditions and difficulties in preparing clean large-area samples still present major limitations to further progress, especially amongst van der Waals magnetic semiconductors. The remarkably stable, high-Tc vdW magnet CrSBr has the potential to overcome these key shortcomings, but its nanoscale properties and rich magnetic phase diagram remain poorly understood. Here we use single spin magnetometry to quantitatively characterise saturation magnetization, magnetic anisotropy constants, and magnetic phase transitions in few-layer CrSBr by direct magnetic imaging. We show pristine magnetic phases, devoid of defects on micron length-scales, and demonstrate remarkable air-stability down the monolayer limit. We furthermore address the spin-flip transition in bilayer CrSBr by imaging the phase-coexistence of regions of antiferromagnetically (AFM) ordered and fully aligned spins. Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realization of novel nanomagnetic devices based on this highly promising vdW magnet.
RESUMEN
The magnetic proximity effect can induce a spin dependent exchange shift in the band structure of graphene. This produces a magnetization and a spin polarization of the electron/hole carriers in this material, paving the way for its use as an active component in spintronics devices. The electrostatic control of this spin polarization in graphene has however never been demonstrated so far. We show that interfacing graphene with the van der Waals antiferromagnet CrSBr results in an unconventional manifestation of the quantum Hall effect, which can be attributed to the presence of counterflowing spin-polarized edge channels originating from the spin-dependent exchange shift in graphene. We extract an exchange shift ranging from 27 - 32 meV, and show that it also produces an electrostatically tunable spin polarization of the electron/hole carriers in graphene ranging from - 50% to + 69% in the absence of a magnetic field. This proof of principle provides a starting point for the use of graphene as an electrostatically tunable source of spin current and could allow this system to generate a large magnetoresistance in gate tunable spin valve devices.
RESUMEN
Heat-to-charge conversion efficiency of thermoelectric materials is closely linked to the entropy per charge carrier. Thus, magnetic materials are promising building blocks for highly efficient energy harvesters as their carrier entropy is boosted by a spin degree of freedom. In this work, we investigate how this spin-entropy impacts heat-to-charge conversion in the A-type antiferromagnet CrSBr. We perform simultaneous measurements of electrical conductance and thermocurrent while changing magnetic order using the temperature and magnetic field as tuning parameters. We find a strong enhancement of the thermoelectric power factor at around the Néel temperature. We further reveal that the power factor at low temperatures can be increased by up to 600% upon applying a magnetic field. Our results demonstrate that the thermoelectric properties of 2D magnets can be optimized by exploiting the sizable impact of spin-entropy and confirm thermoelectric measurements as a sensitive tool to investigate subtle magnetic phase transitions in low-dimensional magnets.
RESUMEN
The discovery of magnetic order at the 2D limit has sparked new exploration of van der Waals magnets for potential use in spintronics, magnonics, and quantum information applications. However, many of these materials feature low magnetic ordering temperatures and poor air stability, limiting their fabrication into practical devices. In this Mini-Review, we present a promising material for fundamental studies and functional use: CrSBr, an air-stable, two-dimensional magnetic semiconductor. Our discussion highlights experimental research on bulk CrSBr, including quasi-1D semiconducting properties, A-type antiferromagnetic order (TN = 132 K), and strong coupling between its electronic and magnetic properties. We then discuss the behavior of monolayer and few-layer flakes and present a perspective on promising avenues for further studies on CrSBr.
RESUMEN
Metal-metal contacts, though not yet widely realized, may provide exciting opportunities to serve as tunable and functional interfaces in single-molecule devices. One of the simplest components which might facilitate such binding interactions is the ferrocene group. Notably, direct bonds between the ferrocene iron center and metals such as Pd or Co have been demonstrated in molecular complexes comprising coordinating ligands attached to the cyclopentadienyl rings. Here, we demonstrate that ferrocene-based single-molecule devices with Fe-Au interfacial contact geometries form at room temperature in the absence of supporting coordinating ligands. Applying a photoredox reaction, we propose that ferrocene only functions effectively as a contact group when oxidized, binding to gold through a formal Fe3+ center. This observation is further supported by a series of control measurements and density functional theory calculations. Our findings extend the scope of junction contact chemistries beyond those involving main group elements, lay the foundation for light switchable ferrocene-based single-molecule devices, and highlight new potential mechanistic function(s) of unsubstituted ferrocenium groups in synthetic processes.
RESUMEN
State-of-the-art methods in photoproximity labeling center on the targeted generation and capture of short-lived reactive intermediates to provide a snapshot of local protein environments. Diazirines are the current gold standard for high-resolution proximity labeling, generating short-lived aryl(trifluoromethyl) carbenes. Here, we present a method to access aryl(trifluoromethyl) carbenes from a stable diazo source via tissue-penetrable, deep red to near-infrared light (600-800 nm). The operative mechanism of this activation involves Dexter energy transfer from photoexcited osmium(II) photocatalysts to the diazo, thus revealing an aryl(trifluoromethyl) carbene. The labeling preferences of the diazo probe with amino acids are studied, showing high reactivity toward heteroatom-H bonds. Upon the synthesis of a biotinylated diazo probe, labeling studies are conducted on native proteins as well as proteins conjugated to the Os photocatalyst. Finally, we demonstrate that the conjugation of a protein inhibitor to the photocatalyst also enables selective protein labeling in the presence of spectator proteins and achieves specific labeling of a membrane protein on the surface of mammalian cells via a two-antibody photocatalytic system.
Asunto(s)
Proteínas , Luz Roja , Animales , Proteínas/química , Metano/química , Diazometano/química , MamíferosRESUMEN
Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.
RESUMEN
Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2 (FGT) are reported. The orientation of the exchange bias is along the in-plane easy axis of CrSBr, perpendicular to the out-of-plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in-plane exchange bias provides sufficient symmetry breaking to allow deterministic spin-orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non-zero exchange bias at 30 K.
RESUMEN
Molecular clusters can function as nanoscale atoms/superatoms, assembling into superatomic solids, a new class of solid-state materials with designable properties through modifications on superatoms. To explore possibilities on diversifying building blocks, here we thoroughly studied one representative superatom, Co6 Se8 (PEt3 )6 . We probed its structural, electronic, and magnetic properties and revealed its detailed electronic structure as valence electrons delocalize over inorganic [Co6 Se8 ] core while ligands function as an insulated shell. 59 Co SSNMR measurements on the core and 31 P, 13 C on the ligands show that the neutral Co6 Se8 (PEt3 )6 is diamagnetic and symmetric, with all ligands magnetically equivalent. Quantum computations cross-validate NMR results and reveal degenerate delocalized HOMO orbitals, indicating aromaticity. Ligand substitution keeps the inorganic core nearly intact. After losing one electron, the unpaired electron in [Co6 Se8 (PEt3 )6 ]+1 is delocalized, causing paramagnetism and a delocalized electron spin. Notably, this feature of electron/spin delocalization over a large cluster is attractive for special single-electron devices.
RESUMEN
Exciton polaritons are quasiparticles of photons coupled strongly to bound electron-hole pairs, manifesting as an anti-crossing light dispersion near an exciton resonance. Highly anisotropic semiconductors with opposite-signed permittivities along different crystal axes are predicted to host exotic modes inside the anti-crossing called hyperbolic exciton polaritons (HEPs), which confine light subdiffractionally with enhanced density of states. Here, we show observational evidence of steady-state HEPs in the van der Waals magnet chromium sulfide bromide (CrSBr) using a cryogenic near-infrared near-field microscope. At low temperatures, in the magnetically-ordered state, anisotropic exciton resonances sharpen, driving the permittivity negative along one crystal axis and enabling HEP propagation. We characterize HEP momentum and losses in CrSBr, also demonstrating coupling to excitonic sidebands and enhancement by magnetic order: which boosts exciton spectral weight via wavefunction delocalization. Our findings open new pathways to nanoscale manipulation of excitons and light, including routes to magnetic, nonlocal, and quantum polaritonics.
RESUMEN
Nanoparticles (NPs) may behave like atoms or molecules in the self-assembly into artificial solids with stimuli-responsive properties. However, the functionality engineering of nanoparticle-assembled solids is still far behind the aesthetic approaches for molecules, with a major problem arising from the lack of atomic-precision in the NPs, which leads to incoherence in superlattices. Here we exploit coherent superlattices (or supercrystals) that are assembled from atomically precise Au103S2(SR)41 NPs (core dia. = 1.6 nm, SR = thiolate) for controlling the charge transport properties with atomic-level structural insights. The resolved interparticle ligand packing in Au103S2(SR)41-assembled solids reveals the mechanism behind the thermally-induced sharp transition in charge transport through the macroscopic crystal. Specifically, the response to temperature induces the conformational change to the R groups of surface ligands, as revealed by variable temperature X-ray crystallography with atomic resolution. Overall, this approach leads to an atomic-level correlation between the interparticle structure and a bi-stability functionality of self-assembled supercrystals, and the strategy may enable control over such materials with other novel functionalities.
RESUMEN
Two-dimensional antiferromagnets have garnered considerable interest for the next generation of functional spintronics. However, many bulk materials from which two-dimensional antiferromagnets are isolated are limited by their air sensitivity, low ordering temperatures, and insulating transport properties. TaFe1+yTe3 aims to address these challenges with increased air stability, metallic transport, and robust antiferromagnetism. Here, we synthesize TaFe1+yTe3 (y = 0.14), identify its structural, magnetic, and electronic properties, and elucidate the relationships between them. Axial-dependent high-field magnetization measurements on TaFe1.14Te3 reveal saturation magnetic fields ranging between 27 and 30 T with saturation magnetic moments of 2.05-2.12 µB. Magnetotransport measurements confirm that TaFe1.14Te3 is metallic with strong coupling between magnetic order and electronic transport. Angle-resolved photoemission spectroscopy measurements across the magnetic transition uncover a complex interplay between itinerant electrons and local magnetic moments that drives the magnetic transition. We demonstrate the ability to isolate few-layer sheets of TaFe1.14Te3, establishing TaFe1.14Te3 as a potential platform for two-dimensional spintronics.
RESUMEN
Fully leveraging the remarkable properties of low-dimensional semiconductors requires developing a deep understanding of how their structure and disorder affect the flow of electronic energy. Here, we study exciton transport in single crystals of the two-dimensional superatomic semiconductor CsRe6Se8I3, which straddles a photophysically rich yet elusive intermediate electronic-coupling regime. Using femtosecond scattering microscopy to directly image exciton transport in CsRe6Se8I3, we reveal the rare coexistence of coherent and incoherent exciton transport, leading to either persistent or transient electronic delocalization depending on temperature. Notably, coherent excitons exhibit ballistic transport at speeds approaching an extraordinary 1600 km/s over 300 fs. Such fast transport is mediated by J-aggregate-like superradiance, owing to the anisotropic structure and long-range order of CsRe6Se8I3. Our results establish superatomic crystals as ideal platforms for studying the intermediate electronic-coupling regime in highly ordered environments, in this case displaying long-range electronic delocalization, ultrafast energy flow, and a tunable dual transport regime.
RESUMEN
The transport of energy and information in semiconductors is limited by scattering between electronic carriers and lattice phonons, resulting in diffusive and lossy transport that curtails all semiconductor technologies. Using Re6Se8Cl2, a van der Waals (vdW) superatomic semiconductor, we demonstrate the formation of acoustic exciton-polarons, an electronic quasiparticle shielded from phonon scattering. We directly imaged polaron transport in Re6Se8Cl2 at room temperature, revealing quasi-ballistic, wavelike propagation sustained for a nanosecond and several micrometers. Shielded polaron transport leads to electronic energy propagation lengths orders of magnitude greater than in other vdW semiconductors, exceeding even silicon over a nanosecond. We propose that, counterintuitively, quasi-flat electronic bands and strong exciton-acoustic phonon coupling are together responsible for the transport properties of Re6Se8Cl2, establishing a path to ballistic room-temperature semiconductors.
RESUMEN
We advance the chemistry of apical chlorine substitution in the 2D superatomic semiconductor Re6Se8Cl2 to build functional and atomically precise monolayers on the surface of the 2D superatomic Re6Se8 substrate. We create a functional monolayer by installing surface (2,2'-bipyridine)-4-sulfide (Sbpy) groups that chelate to catalytically active metal complexes. Through this reaction chemistry, we can create monolayers where we can control the distribution of catalytic sites. As a demonstration, we create highly active electrocatalysts for the oxygen evolution reaction using monolayers of cobalt(acetylacetonate)2bipyridine. We can further produce a series of catalysts by incorporating organic spacers in the functional monolayers. The structure and flexibility of the surface linkers can affect the catalytic performance, possibly by tuning the coupling between the functional monolayer and the superatomic substrate. These studies establish that the Re6Se8 sheet behaves as a chemical pegboard: a surface amenable to geometrically and chemically well-defined modification to yield functional monolayers, in this case catalytically active, that are atomically precise. This is an effective method to generate diverse families of functional nanomaterials.
RESUMEN
The two natural allotropes of carbon, diamond and graphite, are extended networks of sp3-hybridized and sp2-hybridized atoms, respectively1. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C60 that bridges the gulf between molecular and extended carbon materials. Its constituent fullerene subunits arrange hexagonally in a covalently interconnected molecular sheet. We report charge-neutral, purely carbon-based macroscopic crystals that are large enough to be mechanically exfoliated to produce molecularly thin flakes with clean interfaces-a critical requirement for the creation of heterostructures and optoelectronic devices2. The synthesis entails growing single crystals of layered polymeric (Mg4C60)∞ by chemical vapour transport and subsequently removing the magnesium with dilute acid. We explore the thermal conductivity of this material and find it to be much higher than that of molecular C60, which is a consequence of the in-plane covalent bonding. Furthermore, imaging few-layer graphullerene flakes using transmission electron microscopy and near-field nano-photoluminescence spectroscopy reveals the existence of moiré-like superlattices3. More broadly, the synthesis of extended carbon structures by polymerization of molecular precursors charts a clear path to the systematic design of materials for the construction of two-dimensional heterostructures with tunable optoelectronic properties.
RESUMEN
The interaction between distinct excitations in solids is of both fundamental interest and technological importance. One such interaction is the coupling between an exciton, a Coulomb bound electron-hole pair, and a magnon, a collective spin excitation. The recent emergence of van der Waals magnetic semiconductors1 provides a platform to explore these exciton-magnon interactions and their fundamental properties, such as strong correlation2, as well as their photospintronic and quantum transduction3 applications. Here we demonstrate the precise control of coherent exciton-magnon interactions in the layered magnetic semiconductor CrSBr. We varied the direction of an applied magnetic field relative to the crystal axes, and thus the rotational symmetry of the magnetic system4. Thereby, we tuned not only the exciton coupling to the bright magnon, but also to an optically dark mode via magnon-magnon hybridization. We further modulated the exciton-magnon coupling and the associated magnon dispersion curves through the application of uniaxial strain. At a critical strain, a dispersionless dark magnon band emerged. Our results demonstrate an unprecedented level of control of the opto-mechanical-magnonic coupling, and a step towards the predictable and controllable implementation of hybrid quantum magnonics5-11.