Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Clin Transl Med ; 14(6): e1723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877653

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease. METHODS: We describe an integrated whole-exome sequencing and transcriptomic study of 37 iCCAs patients in Germany. RESULTS: We observed as most frequently mutated genes ARID1A (14%), IDH1, BAP1, TP53, KRAS, and ATM in 8% of patients. We identified FGFR2::BICC1 fusions in two tumours, and FGFR2::KCTD1 and TMEM106B::ROS1 as novel fusions with potential therapeutic implications in iCCA and confirmed oncogenic properties of TMEM106B::ROS1 in vitro. Using a data integration framework, we identified PBX1 as a novel central regulatory gene in iCCA. We performed extended screening by targeted sequencing of an additional 40 CCAs. In the joint analysis, IDH1 (13%), BAP1 (10%), TP53 (9%), KRAS (7%), ARID1A (7%), NF1 (5%), and ATM (5%) were the most frequently mutated genes, and we found PBX1 to show copy gain in 20% of the tumours. According to other studies, amplifications of PBX1 tend to occur in European iCCAs in contrast to liver fluke-associated Asian iCCAs. CONCLUSIONS: By analyzing an additional European cohort of iCCA patients, we found that PBX1 protein expression was a marker of poor prognosis. Overall, our findings provide insight into key molecular alterations in iCCA, reveal new targetable fusion genes, and suggest that PBX1 is a novel modulator of this disease.


Asunto(s)
Colangiocarcinoma , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas , Humanos , Colangiocarcinoma/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Masculino , Proteínas Proto-Oncogénicas/genética , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Neoplasias de los Conductos Biliares/genética , Alemania/epidemiología , Biomarcadores de Tumor/genética , Adulto , Genómica/métodos , Proteínas Tirosina Quinasas
3.
Biol Reprod ; 107(1): 157-167, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35554494

RESUMEN

Although hundreds of knockout mice show infertility as a major phenotype, the causative genic mutations of male infertility in humans remain rather limited. Here, we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to G is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptomic profiles in the Taf7l (D144G) mutant testes. These results support TAF7L mutation as a risk factor for oligozoospermia in humans.


Asunto(s)
Infertilidad Masculina , Oligospermia , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Animales , Ácido Aspártico , Genes Ligados a X/genética , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Mutación , Mutación Missense , Oligospermia/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética
6.
Genome Biol ; 22(1): 167, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074348

RESUMEN

BACKGROUND: CIMP (CpG island methylator phenotype) is an epigenetic molecular subtype, observed in multiple malignancies and associated with the epigenetic silencing of tumor suppressors. Currently, for most cancers including gastric cancer (GC), mechanisms underlying CIMP remain poorly understood. We sought to discover molecular contributors to CIMP in GC, by performing global DNA methylation, gene expression, and proteomics profiling across 14 gastric cell lines, followed by similar integrative analysis in 50 GC cell lines and 467 primary GCs. RESULTS: We identify the cystathionine beta-synthase enzyme (CBS) as a highly recurrent target of epigenetic silencing in CIMP GC. Likewise, we show that CBS epimutations are significantly associated with CIMP in various other cancers, occurring even in premalignant gastroesophageal conditions and longitudinally linked to clinical persistence. Of note, CRISPR deletion of CBS in normal gastric epithelial cells induces widespread DNA methylation changes that overlap with primary GC CIMP patterns. Reflecting its metabolic role as a gatekeeper interlinking the methionine and homocysteine cycles, CBS loss in vitro also causes reductions in the anti-inflammatory gasotransmitter hydrogen sulfide (H2S), with concomitant increase in NF-κB activity. In a murine genetic model of CBS deficiency, preliminary data indicate upregulated immune-mediated transcriptional signatures in the stomach. CONCLUSIONS: Our results implicate CBS as a bi-faceted modifier of aberrant DNA methylation and inflammation in GC and highlights H2S donors as a potential new therapy for CBS-silenced lesions.


Asunto(s)
Islas de CpG/genética , Cistationina betasintasa/genética , Metilación de ADN/genética , Inflamación/genética , Mutación/genética , Neoplasias Gástricas/genética , Animales , Línea Celular Tumoral , Células Epiteliales/metabolismo , Células Epiteliales/patología , Eliminación de Gen , Humanos , Intestinos/patología , Metaplasia , Ratones Transgénicos , Fenotipo , Proteoma/metabolismo , Transcriptoma/genética
7.
Genome Med ; 13(1): 3, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413596

RESUMEN

BACKGROUND: Family history has traditionally been an essential part of clinical care to assess health risks. However, declining sequencing costs have precipitated a shift towards genomics-first approaches in population screening programs rendering the value of family history unknown. We evaluated the utility of incorporating family history information for genomic sequencing selection. METHODS: To ascertain the relationship between family histories on such population-level initiatives, we analysed whole genome sequences of 1750 research participants with no known pre-existing conditions, of which half received comprehensive family history assessment of up to four generations, focusing on 95 cancer genes. RESULTS: Amongst the 1750 participants, 866 (49.5%) had high-quality standardised family history available. Within this group, 73 (8.4%) participants had an increased family history risk of cancer (increased FH risk cohort) and 1 in 7 participants (n = 10/73) carried a clinically actionable variant inferring a sixfold increase compared with 1 in 47 participants (n = 17/793) assessed at average family history cancer risk (average FH risk cohort) (p = 0.00001) and a sevenfold increase compared to 1 in 52 participants (n = 17/884) where family history was not available (FH not available cohort) (p = 0.00001). The enrichment was further pronounced (up to 18-fold) when assessing only the 25 cancer genes in the American College of Medical Genetics (ACMG) Secondary Findings (SF) genes. Furthermore, 63 (7.3%) participants had an increased family history cancer risk in the absence of an apparent clinically actionable variant. CONCLUSIONS: These findings demonstrate that the collection and analysis of comprehensive family history and genomic data are complementary and in combination can prioritise individuals for genomic analysis. Thus, family history remains a critical component of health risk assessment, providing important actionable data when implementing genomics screening programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT02791152 . Retrospectively registered on May 31, 2016.


Asunto(s)
Atención a la Salud , Genómica , Anamnesis , Medicina de Precisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
8.
Nat Commun ; 11(1): 739, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029730

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with features that vary by ethnicity. A systematic characterization of the genomic landscape of Chinese ccRCC is lacking, and features of ccRCC associated with tumor thrombus (ccRCC-TT) remain poorly understood. Here, we applied whole-exome sequencing on 110 normal-tumor pairs and 42 normal-tumor-thrombus triples, and transcriptome sequencing on 61 tumor-normal pairs and 30 primary-thrombus pairs from 152 Chinese patients with ccRCC. Our analysis reveals that a mutational signature associated with aristolochic acid (AA) exposure is widespread in Chinese ccRCC. Tumors from patients with ccRCC-TT show a higher mutational burden and genomic instability; in addition, mutations in BAP1 and SETD2 are highly enriched in patients with ccRCC-TT. Moreover, patients with/without TT show distinct molecular characteristics. We reported the integrative genomic sequencing of Chinese ccRCC and identified the features associated with tumor thrombus, which may facilitate ccRCC diagnosis, prognosis and treatment.


Asunto(s)
Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Trombosis/genética , Adulto , Anciano , Anciano de 80 o más Años , Ácidos Aristolóquicos/toxicidad , Pueblo Asiatico/genética , Carcinoma de Células Renales/complicaciones , Carcinoma de Células Renales/etiología , China , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Inestabilidad Genómica , Humanos , Neoplasias Renales/complicaciones , Neoplasias Renales/etiología , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Trombosis/complicaciones , Trombosis/etiología , Secuenciación del Exoma
9.
NPJ Genom Med ; 4: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231544

RESUMEN

Whilst the underlying principles of precision medicine are comparable across the globe, genomic references, health practices, costs and discrimination policies differ in Asian settings compared to the reported initiatives involving European-derived populations. We have addressed these variables by developing an evolving reference base of genomic and phenotypic data and a framework to return medically significant variants to consenting research participants applicable for the Asian context. Targeting 10,000 participants, over 2000 Singaporeans, with no known pre-existing health conditions, have consented to an extensive clinical health screen, family health history collection, genome sequencing and ongoing follow-up. Genomic variants in a subset of genes associated with Mendelian disorders and drug responses are analysed using an in-house bioinformatics pipeline. A multidisciplinary team reviews the classification of variants and a research report is generated. Medically significant variants are returned to consenting participants through a bespoke return-of-result genomics clinic. Variant validation and subsequent clinical referral are advised as appropriate. The design and implementation of this flexible learning framework enables a cohort of detailed phenotyping and genotyping of healthy Singaporeans to be established and the frequency of disease-causing variants in this population to be determined. Our findings will contribute to international precision medicine initiatives, bridging gaps with ethnic-specific data and insights from this understudied population.

10.
Cancer Cell ; 35(6): 932-947.e8, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31130341

RESUMEN

We performed genomic and transcriptomic sequencing of 133 combined hepatocellular and intrahepatic cholangiocarcinoma (cHCC-ICC) cases, including separate, combined, and mixed subtypes. Integrative comparison of cHCC-ICC with hepatocellular carcinoma and intrahepatic cholangiocarcinoma revealed that combined and mixed type cHCC-ICCs are distinct subtypes with different clinical and molecular features. Integrating laser microdissection, cancer cell fraction analysis, and single nucleus sequencing, we revealed both mono- and multiclonal origins in the separate type cHCC-ICCs, whereas combined and mixed type cHCC-ICCs were all monoclonal origin. Notably, cHCC-ICCs showed significantly higher expression of Nestin, suggesting Nestin may serve as a biomarker for diagnosing cHCC-ICC. Our results provide important biological and clinical insights into cHCC-ICC.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Perfilación de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Complejas y Mixtas/genética , Nestina/genética , Transcriptoma , Asia , Neoplasias de los Conductos Biliares/química , Neoplasias de los Conductos Biliares/clasificación , Neoplasias de los Conductos Biliares/patología , Biomarcadores de Tumor/análisis , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/clasificación , Carcinoma Hepatocelular/patología , Colangiocarcinoma/química , Colangiocarcinoma/clasificación , Colangiocarcinoma/patología , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/química , Neoplasias Hepáticas/clasificación , Neoplasias Hepáticas/patología , Masculino , Neoplasias Complejas y Mixtas/química , Neoplasias Complejas y Mixtas/clasificación , Neoplasias Complejas y Mixtas/patología , Nestina/análisis , Valor Predictivo de las Pruebas , Pronóstico , Regulación hacia Arriba
11.
Genet Med ; 21(1): 207-212, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29961769

RESUMEN

PURPOSE: Genomic studies have demonstrated the necessity of ethnicity-specific population data to ascertain variant pathogenicity for disease diagnosis and treatment. This study examined the carrier prevalence of treatable inherited disorders (TIDs), where early diagnosis of at-risk offspring can significantly improve clinical outcomes. METHODS: Existing exome/ genome sequencing data of 831 Singaporeans were aggregated and examined for disease causing variants in 104 genes associated with 80 TIDs. RESULTS: Among the 831 Singaporean participants, genomic variant filtering and analysis identified 1 in 18 individuals (6%) to be carriers amongst one of 13 TIDs. Citrin deficiency and Wilson disease had the highest carrier frequency of 1 in 41, and 1 in 103 individuals, respectively. The pathogenic variants associated with citrin deficiency were 24 times more prevalent in our local cohorts when compared to Western cohorts. CONCLUSION: This study demonstrates the value of a population specific genomic database to determine true disease prevalence and has enabled the discovery of carrier frequencies of treatable genetic conditions specific to South East Asian populations, which are currently underestimated in existing data sources. This study framework can be adapted to other population groups and expanded to multiple genetic conditions to inform health policies directing precision medicine.


Asunto(s)
Exoma/genética , Tamización de Portadores Genéticos , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Asia , Etnicidad , Frecuencia de los Genes , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/patología , Variación Genética , Genética de Población , Humanos , Masculino , Metagenómica , Mutación/genética , Medicina de Precisión
12.
Genet Med ; 20(12): 1692, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30089799

RESUMEN

At the time of publication the author Jyn Ling Kuan did not have a master's degree; this has now been amended to BSc. This has now been corrected in the PDF and HTML versions of the article.

13.
Stem Cell Res Ther ; 9(1): 68, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29559008

RESUMEN

BACKGROUND: While a shift towards non-viral and animal component-free methods of generating induced pluripotent stem (iPS) cells is preferred for safer clinical applications, there is still a shortage of reliable cell sources and protocols for efficient reprogramming. METHODS: Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days). RESULTS: The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation. CONCLUSION: In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Pulpa Dental/citología , Epigénesis Genética , Células Madre Mesenquimatosas/citología , Plásmidos/genética , Animales , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Cultivo Primario de Células/métodos
14.
Nat Commun ; 9(1): 100, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311615

RESUMEN

The repression of telomerase activity during cellular differentiation promotes replicative aging and functions as a physiological barrier for tumorigenesis in long-lived mammals, including humans. However, the underlying mechanisms remain largely unclear. Here we describe how miR-615-3p represses hTERT expression. mir-615-3p is located in an intron of the HOXC5 gene, a member of the highly conserved homeobox family of transcription factors controlling embryogenesis and development. Unexpectedly, we found that HoxC5 also represses hTERT expression by disrupting the long-range interaction between hTERT promoter and its distal enhancer. The 3'UTR of hTERT and its upstream enhancer region are well conserved in long-lived primates. Both mir-615-3p and HOXC5 are activated upon differentiation, which constitute a feed-forward loop that coordinates transcriptional and post-transcriptional repression of hTERT during cellular differentiation. Deregulation of HOXC5 and mir-615-3p expression may contribute to the activation of hTERT in human cancers.


Asunto(s)
Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Proteínas de Homeodominio/genética , MicroARNs/genética , Telomerasa/biosíntesis , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Animales , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Ratones , Neoplasias/genética , Neoplasias/patología , Regiones Promotoras Genéticas/genética
15.
Sci Rep ; 7: 40737, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102343

RESUMEN

Circulating tumour DNA (ctDNA) has the potential to be a specific biomarker for the monitoring of tumours in patients with colorectal cancer (CRC). Here, our aim was to develop a personalised surveillance strategy to monitor the clinical course of CRC after surgery. We developed patient-specific ctDNA assays based on multiplexed detection of somatic mutations identified from patient primary tumours, and applied them to detect ctDNA in 44 CRC patients, analysing a total of 260 plasma samples. We found that ctDNA detection correlated with clinical events - it is detectable in pre-operative but not post-operative plasma, and also in patients with recurrent CRC. We also detected ctDNA in 11 out of 15 cases at or before clinical or radiological recurrence of CRC, indicating the potential of our assay for early detection of metastasis. We further present data from a patient with multiple primary cancers to demonstrate the specificity of our assays to distinguish between CRC recurrence and a second primary cancer. Our approach can complement current methods for surveillance of CRC by adding an individualised biological component, allowing us not only to point to the presence of residual or recurrent disease, but also attribute it to the original cancer.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Neoplasias Colorrectales/genética , ADN de Neoplasias , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/cirugía , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Mutación , Periodo Posoperatorio , Recurrencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento , Flujo de Trabajo
16.
Ophthalmic Genet ; 38(1): 43-50, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28095098

RESUMEN

BACKGROUND: In a four-generation Caucasian family variably diagnosed with autosomal dominant (AD) Stickler or Wagner disease, commercial gene screening failed to identify a mutation in COL2A1 or VCAN. We utilized linkage mapping and exome sequencing to identify the causal variant. MATERIALS AND METHODS: Genomic DNA samples collected from 40 family members were analyzed. A whole-genome linkage scan was performed using Illumina HumanLinkage-24 BeadChip followed by two-point and multipoint linkage analyses using FASTLINK and MERLIN. Exome sequencing was performed on two affected individuals, followed by co-segregation analysis. RESULTS: Parametric multipoint linkage analysis using an AD inheritance model demonstrated HLOD scores > 2.00 at chromosomes 1p36.13-1p36.11 and 12q12-12q14.1. SIMWALK multipoint analysis replicated the peak in chromosome 12q (peak LOD = 1.975). FASTLINK two-point analysis highlighted several clustered chromosome 12q SNPs with HLOD > 1.0. Exome sequencing revealed a novel nonsense mutation (c.115C>T, p.Gln39*) in exon 2 of COL2A1 that is expected to result in nonsense-mediated decay of the RNA transcript. This mutation co-segregated with all clinically affected individuals and seven individuals who were clinically unaffected. CONCLUSIONS: The utility of combining traditional linkage mapping and exome sequencing is highlighted to identify gene mutations in large families displaying a Mendelian inheritance of disease. Historically, nonsense mutations in exon 2 of COL2A1 have been reported to cause a fully penetrant ocular-only Stickler phenotype with few or no systemic manifestations. We report a novel nonsense mutation in exon 2 of COL2A1 that displays incomplete penetrance and/or variable age of onset with extraocular manifestations.


Asunto(s)
Artritis/genética , Codón sin Sentido , Colágeno Tipo II/genética , Enfermedades del Tejido Conjuntivo/genética , Pérdida Auditiva Sensorineural/genética , Penetrancia , Desprendimiento de Retina/genética , Población Blanca/genética , Adulto , Anciano , Artritis/diagnóstico , Niño , Mapeo Cromosómico , Enfermedades del Tejido Conjuntivo/diagnóstico , Análisis Mutacional de ADN , Exoma/genética , Femenino , Ligamiento Genético , Pruebas Genéticas , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa , Desprendimiento de Retina/diagnóstico
17.
ESMO Open ; 1(1): e000009, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27843583

RESUMEN

BACKGROUND: Gene expression profiling has contributed greatly to cancer research. However, expression-driven biomarker discovery in metastatic gastric cancer (mGC) remains unclear. A gene expression profile predicting RAD001 response in refractory GC was explored in this study. METHODS: Total RNA isolated from 54 tumour specimens from patients with mGC, prior to RAD001 treatment, was analysed via the NanoString nCounter gene expression assay. This assay targeted 477 genes representing 10 different GC-related oncogenic signalling and molecular subtype-specific expression signatures. Gene expression profiles were correlated with patient clinicopathological variables. RESULTS: NanoString data confirmed similar gene expression profiles previously identified by microarray analysis. Signature I with 3 GC subtypes (mesenchymal, metabolic and proliferative) showed approximately 90% concordance where the mesenchymal and proliferative subtypes were significantly associated with signet ring cell carcinoma and the WHO classified tubular adenocarcinoma GC, respectively (p=0.042). Single-gene-level correlations with patient clinicopathological variables showed strong associations between FHL1 expression (mesenchymal subtype) and signet ring cell carcinoma, and NEK2, OIP5, PRC1, TPX2 expression (proliferative subtype) with tubular adenocarcinoma (adjusted p<0.05). Increased BRCA2 (p=0.040) and MMP9 (p=0.045) expression was significantly associated with RAD001 good response and longer progression-free survival outcome (BRCA2, p=0.012, HR 0.370 95% CI (0.171 to 0.800); MMP9, p=0.010, HR 0.359 95% CI (0.166 to 0.779)). In contrast, increased BTC (p=0.035) expression was significantly associated with RAD001 poor response and poor progression-free survival (p=0.031, HR 2.336 95% CI (1.079 to 5.059) by univariate Cox regression analysis. CONCLUSIONS: Microarray results are highly reproducible with NanoString nCounter gene expression profiling. Additionally, BRCA2 and MMP9 expression are potential predictive biomarkers for good response in RAD001-treated mGC.

18.
DNA Repair (Amst) ; 46: 9-19, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27650847

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen which infects cystic fibrosis and cancer patients with compromised immune systems. LasR is a master regulator which controls the virulence of P. aeruginosa in response to bacterial cell-density and host signals. During infection, lasR is frequently mutated, conferring P. aeruginosa a growth advantage in hosts and enhances resistance to widely used antibiotics. However, the mechanistic basis of lasR mutation is not well understood. We have tested here the hypothesis that transcription strength is a contributory determinant of lasR mutagenesis. P. aeruginosa strains with different lasR transcription strengths were therefore engineered and the lasR mutations were monitored unbiasedly using next-generation sequencing technology. Our results suggest that the strength of transcription could be one of the deterministic factors that drive the mutagenesis of lasR in P. aeruginosa, shedding new insights into bacterial infection and antibiotic resistance.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Pseudomonas aeruginosa/genética , Transactivadores/genética , Transcripción Genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Recuento de Colonia Microbiana , Farmacorresistencia Bacteriana , Aptitud Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Plásmidos/química , Plásmidos/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/metabolismo
19.
Nat Commun ; 7: 12983, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27677335

RESUMEN

Regulatory enhancer elements in solid tumours remain poorly characterized. Here we apply micro-scale chromatin profiling to survey the distal enhancer landscape of primary gastric adenocarcinoma (GC), a leading cause of global cancer mortality. Integrating 110 epigenomic profiles from primary GCs, normal gastric tissues and cell lines, we highlight 36,973 predicted enhancers and 3,759 predicted super-enhancers respectively. Cell-line-defined super-enhancers can be subclassified by their somatic alteration status into somatic gain, loss and unaltered categories, each displaying distinct epigenetic, transcriptional and pathway enrichments. Somatic gain super-enhancers are associated with complex chromatin interaction profiles, expression patterns correlated with patient outcome and dense co-occupancy of the transcription factors CDX2 and HNF4α. Somatic super-enhancers are also enriched in genetic risk SNPs associated with cancer predisposition. Our results reveal a genome-wide reprogramming of the GC enhancer and super-enhancer landscape during tumorigenesis, contributing to dysregulated local and regional cancer gene expression.

20.
Gastroenterology ; 151(4): 637-650.e10, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27373511

RESUMEN

BACKGROUD & AIMS: Gastric cancer (GC) is the third leading cause of global cancer mortality. Adenosine-to-inosine RNA editing is a recently described novel epigenetic mechanism involving sequence alterations at the RNA but not DNA level, primarily mediated by ADAR (adenosine deaminase that act on RNA) enzymes. Emerging evidence suggests a role for RNA editing and ADARs in cancer, however, the relationship between RNA editing and GC development and progression remains unknown. METHODS: In this study, we leveraged on the next-generation sequencing transcriptomics to demarcate the GC RNA editing landscape and the role of ADARs in this deadly malignancy. RESULTS: Relative to normal gastric tissues, almost all GCs displayed a clear RNA misediting phenotype with ADAR1/2 dysregulation arising from the genomic gain and loss of the ADAR1 and ADAR2 gene in primary GCs, respectively. Clinically, patients with GCs exhibiting ADAR1/2 imbalance demonstrated extremely poor prognoses in multiple independent cohorts. Functionally, we demonstrate in vitro and in vivo that ADAR-mediated RNA misediting is closely associated with GC pathogenesis, with ADAR1 and ADAR2 playing reciprocal oncogenic and tumor suppressive roles through their catalytic deaminase domains, respectively. Using an exemplary target gene PODXL (podocalyxin-like), we demonstrate that the ADAR2-regulated recoding editing at codon 241 (His to Arg) confers a loss-of-function phenotype that neutralizes the tumorigenic ability of the unedited PODXL. CONCLUSIONS: Our study highlights a major role for RNA editing in GC disease and progression, an observation potentially missed by previous next-generation sequencing analyses of GC focused on DNA alterations alone. Our findings also suggest new GC therapeutic opportunities through ADAR1 enzymatic inhibition or the potential restoration of ADAR2 activity.


Asunto(s)
Adenosina Desaminasa/genética , Edición de ARN , Proteínas de Unión al ARN/genética , Neoplasias Gástricas/genética , Codón , Progresión de la Enfermedad , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Secuencia de ARN , Sialoglicoproteínas/genética , Neoplasias Gástricas/patología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA