Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(44): 52113-52124, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34405986

RESUMEN

Guerbet alcohols, a class of ß-branched terminal alcohols, find widespread application because of their low melting points and excellent fluidity. Because of the limitations in the activity and selectivity of existing Guerbet catalysts, Guerbet alcohols are not currently produced via the Guerbet reaction but via hydroformylation of oil-derived alkenes followed by aldol condensation. In pursuit of a one-step synthesis of Guerbet alcohols from simple linear alcohol precursors, we show that MOF-derived RuCo alloys achieve over a million turnovers in the Guerbet reaction of 1-propanol, 1-butanol, and 1-pentanol. The active catalyst is formed in situ from ruthenium-impregnated metal-organic framework MFU-1. XPS and XAS studies indicate that the precatalyst is composed of Ru precursor trapped inside the MOF pores with no change in the oxidation state or coordination environment of Ru upon MOF incorporation. The significantly higher reactivity of Ru-impregnated MOF versus a physical mixture of Ru precursor and MOF suggests that the MOF plays an important role in templating the formation of the active catalyst and/or its stabilization. XPS reveals partial reduction of both ruthenium and MOF-derived cobalt under the Guerbet reaction conditions, and TEM/EDX imaging shows that Ru is decorated on the edges of dense nanoparticles, as well as thin nanoplates of CoOx. The use of ethanol rather than higher alcohols as a substrate results in lower turnover frequencies, and RuCo recovered from ethanol upgrading lacks nanostructures with plate-like morphology and does not exhibit Ru-enrichment on the surface and edge sites. Notably, 1H and 31P NMR studies show that through use of K3PO4 as a base promoter in the RuCo-catalyzed alcohol upgrading, the formation of carboxylate salts, a common side product in the Guerbet reaction, was effectively eliminated.

2.
Microsc Microanal ; 27(4): 794-803, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34169813

RESUMEN

High-throughput grain mapping with sub-nanometer spatial resolution is demonstrated using scanning nanobeam electron diffraction (also known as 4D scanning transmission electron microscopy, or 4D-STEM) combined with high-speed direct-electron detection. An electron probe size down to 0.5 nm in diameter is used and the sample investigated is a gold­palladium nanoparticle catalyst. Computational analysis of the 4D-STEM data sets is performed using a disk registration algorithm to identify the diffraction peaks followed by feature learning to map the individual grains. Two unsupervised feature learning techniques are compared: principal component analysis (PCA) and non-negative matrix factorization (NNMF). The characteristics of the PCA versus NNMF output are compared and the potential of the 4D-STEM approach for statistical analysis of grain orientations at high spatial resolution is discussed.

3.
J Am Chem Soc ; 141(44): 17477-17481, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31638777

RESUMEN

RuNi nanoparticles supported on a metal-organic framework (RuNi@MOF) and formed in situ from a ruthenium complex enclosed inside a nickel-based MOF act as a highly active catalyst for the Guerbet reaction of ethanol to 1-butanol, providing turnover numbers up to 725 000 Ru-1. Negligible activity of the RuNi@MOF ethanol upgrading catalyst system toward chemically similar 1-butanol makes it possible to synthesize the competent Guerbet substrate 1-butanol with >99% selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA