Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 30, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521769

RESUMEN

Biofilms are surface-associated communities of bacteria that grow in a self-produced matrix of polysaccharides, proteins, and extracellular DNA (eDNA). Sub-minimal inhibitory concentrations (sub-MIC) of antibiotics induce biofilm formation, potentially as a defensive response to antibiotic stress. However, the mechanisms behind sub-MIC antibiotic-induced biofilm formation are unclear. We show that treatment of Pseudomonas aeruginosa with multiple classes of sub-MIC antibiotics with distinct targets induces biofilm formation. Further, addition of exogenous eDNA or cell lysate failed to increase biofilm formation to the same extent as antibiotics, suggesting that the release of cellular contents by antibiotic-driven bacteriolysis is insufficient. Using a genetic screen for stimulation-deficient mutants, we identified the outer membrane porin OprF and the ECF sigma factor SigX as important. Similarly, loss of OmpA - the Escherichia coli OprF homolog - prevented sub-MIC antibiotic stimulation of E. coli biofilms. Our screen also identified the periplasmic disulfide bond-forming enzyme DsbA and a predicted cyclic-di-GMP phosphodiesterase encoded by PA2200 as essential for biofilm stimulation. The phosphodiesterase activity of PA2200 is likely controlled by a disulfide bond in its regulatory domain, and folding of OprF is influenced by disulfide bond formation, connecting the mutant phenotypes. Addition of reducing agent dithiothreitol prevented sub-MIC antibiotic biofilm stimulation. Finally, activation of a c-di-GMP-responsive promoter follows treatment with sub-MIC antibiotics in the wild-type but not an oprF mutant. Together, these results show that antibiotic-induced biofilm formation is likely driven by a signaling pathway that translates changes in periplasmic redox state into elevated biofilm formation through increases in c-di-GMP.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Hidrolasas Diéster Fosfóricas , Disulfuros/metabolismo
2.
J Card Surg ; 37(1): 62-69, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34662458

RESUMEN

BACKGROUND: Warfarin is the only oral anticoagulant approved for use following mechanical valve surgery (MeVS). Patients may experience prolonged hospital length of stay (LOS) following MeVS awaiting an appropriate warfarin effect. We aimed to determine whether an association exists between time to achieve the first therapeutic international normalized ratio (INR) and LOS following MeVS. MATERIALS AND METHODS: Retrospective single center cohort study. We included consecutive adult patients undergoing elective MeVS from 2013 to 2018. Landmark analyses and multivariable regression with time-updated INR were used to estimate the association between time to therapeutic INR (TTI) and LOS. RESULTS: Among 384 patients (median age: 51 years, interquartile range [IQR]: 41-57; 58.3% male), the median TTI was 4 days (IQR: 2-5). Thirty seven percent of patients were discharged with a subtherapeutic INR, many on bridging anticoagulation or with an INR close to target. Those achieving therapeutic INR had an increased rate of hospital discharge (adjusted hazard ratio: 2.17; 95% confidence interval: 1.71-2.76; p < .0001). Attainment of a therapeutic INR anytime between postoperative Days 4 and 13 was significantly associated with a shorter LOS. CONCLUSIONS: Prolonged time to achieve a therapeutic INR was independently associated with prolonged LOS. Future strategies aimed at improving attainment of therapeutic INR following MeVS may reduce hospital LOS.


Asunto(s)
Anticoagulantes , Válvulas Cardíacas , Adulto , Estudios de Cohortes , Femenino , Humanos , Relación Normalizada Internacional , Tiempo de Internación , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
5.
Artículo en Inglés | MEDLINE | ID: mdl-31262758

RESUMEN

Pseudomonas aeruginosa is a biofilm-forming opportunistic pathogen and is intrinsically resistant to many antibiotics. In a high-throughput screen for molecules that modulate biofilm formation, we discovered that the thiopeptide antibiotic thiostrepton (TS), which is considered to be inactive against Gram-negative bacteria, stimulated P. aeruginosa biofilm formation in a dose-dependent manner. This phenotype is characteristic of exposure to antimicrobial compounds at subinhibitory concentrations, suggesting that TS was active against P. aeruginosa Supporting this observation, TS inhibited the growth of a panel of 96 multidrug-resistant (MDR) P. aeruginosa clinical isolates at low-micromolar concentrations. TS also had activity against Acinetobacter baumannii clinical isolates. The expression of Tsr, a 23S rRNA-modifying methyltransferase from TS producer Streptomyces azureus, in trans conferred TS resistance, confirming that the drug acted via its canonical mode of action, inhibition of ribosome function. The deletion of oligopeptide permease systems used by other peptide antibiotics for uptake failed to confer TS resistance. TS susceptibility was inversely proportional to iron availability, suggesting that TS exploits uptake pathways whose expression is increased under iron starvation. Consistent with this finding, TS activity against P. aeruginosa and A. baumannii was potentiated by the FDA-approved iron chelators deferiprone and deferasirox and by heat-inactivated serum. Screening of P. aeruginosa mutants for TS resistance revealed that it exploits pyoverdine receptors FpvA and FpvB to cross the outer membrane. We show that the biofilm stimulation phenotype can reveal cryptic subinhibitory antibiotic activity, and that TS has activity against select multidrug-resistant Gram-negative pathogens under iron-limited growth conditions, similar to those encountered at sites of infection.


Asunto(s)
Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Tioestreptona/farmacología , Acinetobacter baumannii/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Quelantes del Hierro/farmacología , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Pseudomonas aeruginosa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA