Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
bioRxiv ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39416102

RESUMEN

Oncogenic protein dosage is tightly regulated to enable cancer cells to adapt and survive. Whether this is regulated at the level of translational control and the key factors in cis and trans remain unknown. The Myc oncogene is a central paradigm of an exquisitely regulated oncogene and a major driver of pancreatic ductal adenocarcinoma (PDAC). Using a functional genome-wide CRISPRi screen in PDAC cells, we identified activators of selective MYC translation through its 5' untranslated region (5'UTR) and validated four RNA binding proteins (RBPs), including epitranscriptome modifiers. Among these RBPs, our top hit was RBM42, which is highly expressed in PDAC and predicts poor survival. Combining polysome sequencing and CLIP-seq analyses, we find that RBM42 binds and selectively regulates the translation of MYC and a precise, yet vital suite of pro-oncogenic transcripts, including JUN and EGFR . Mechanistically, employing IP-mass spectrometry analysis, we find that RMB42 is a novel ribosome-associated protein (RAP). Using DMS-Seq and mutagenesis analysis, we show that RBM42 directly binds and remodels the MYC 5'UTR RNA structure, facilitating the formation of the translation pre-initiation complex. Importantly, RBM42 is necessary for human PDAC cell growth and fitness and PDAC tumorigenesis in xenograft mouse models in a Myc-dependent manner in vivo . In PDAC patient samples, RBM42 expression is correlated with Myc protein levels and transcriptional activity. This work transforms our understanding of the translational code in cancer and offers a new therapeutic opening to target the expression of oncogenes.

2.
Mol Cell ; 84(18): 3545-3563.e25, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39260367

RESUMEN

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translation. Nevertheless, a lack of technologies to enrich RAPs across sample types has prevented systematic analysis of RAP identities, dynamics, and functions. We have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including Dhx30 and Llph, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development linked to the translation of genes with long coding sequences. In addition, we showed that RAPIDASH can identify ribosome changes in cancer cells. Finally, we characterized ribosome composition remodeling during immune cell activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs in multiple cell types, tissues, and stimuli and is adaptable to characterize ribosome remodeling in several contexts.


Asunto(s)
Macrófagos , Proteínas Ribosómicas , Ribosomas , Animales , Ribosomas/metabolismo , Ribosomas/genética , Ratones , Humanos , Macrófagos/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Biosíntesis de Proteínas , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Regulación del Desarrollo de la Expresión Génica , Línea Celular Tumoral , Ratones Endogámicos C57BL
3.
Cell Metab ; 36(9): 1945-1962, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232280

RESUMEN

Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero , Humanos , Animales , ARN Mensajero/metabolismo , ARN Mensajero/genética , Redes y Vías Metabólicas , Procesamiento Postranscripcional del ARN
4.
Nature ; 633(8028): 189-197, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39143206

RESUMEN

Fasting is associated with a range of health benefits1-6. How fasting signals elicit changes in the proteome to establish metabolic programmes remains poorly understood. Here we show that hepatocytes selectively remodel the translatome while global translation is paradoxically downregulated during fasting7,8. We discover that phosphorylation of eukaryotic translation initiation factor 4E (P-eIF4E) is induced during fasting. We show that P-eIF4E is responsible for controlling the translation of genes involved in lipid catabolism and the production of ketone bodies. Inhibiting P-eIF4E impairs ketogenesis in response to fasting and a ketogenic diet. P-eIF4E regulates those messenger RNAs through a specific translation regulatory element within their 5' untranslated regions (5' UTRs). Our findings reveal a new signalling property of fatty acids, which are elevated during fasting. We found that fatty acids bind and induce AMP-activated protein kinase (AMPK) kinase activity that in turn enhances the phosphorylation of MAP kinase-interacting protein kinase (MNK), the kinase that phosphorylates eIF4E. The AMPK-MNK-eIF4E axis controls ketogenesis, revealing a new lipid-mediated kinase signalling pathway that links ketogenesis to translation control. Certain types of cancer use ketone bodies as an energy source9,10 that may rely on P-eIF4E. Our findings reveal that on a ketogenic diet, treatment with eFT508 (also known as tomivosertib; a P-eIF4E inhibitor) restrains pancreatic tumour growth. Thus, our findings unveil a new fatty acid-induced signalling pathway that activates selective translation, which underlies ketogenesis and provides a tailored diet intervention therapy for cancer.


Asunto(s)
Carcinogénesis , Ácidos Grasos , Cuerpos Cetónicos , Biosíntesis de Proteínas , Transducción de Señal , Animales , Femenino , Humanos , Ratones , Regiones no Traducidas 5'/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Dieta Cetogénica , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Ayuno/fisiología , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Cuerpos Cetónicos/biosíntesis , Cuerpos Cetónicos/metabolismo , Metabolismo de los Lípidos/genética , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Mol Cell ; 84(16): 3008-3010, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178837

RESUMEN

In a recent study in Cell, Cheng and Wang et al.1 show that the small nucleolar RNA (snoRNA) SNORA13 has a non-canonical role in ribosome biogenesis and senescence by acting directly on RPL23 and regulating its assembly into the 60S ribosomal subunit.


Asunto(s)
ARN Nucleolar Pequeño , Proteínas Ribosómicas , Ribosomas , ARN Nucleolar Pequeño/metabolismo , ARN Nucleolar Pequeño/genética , Ribosomas/metabolismo , Ribosomas/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Humanos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Mol Cancer Res ; 22(4): 360-372, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38236939

RESUMEN

Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis. IMPLICATIONS: PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.


Asunto(s)
MicroARNs , Neoplasias , Canales Catiónicos TRPM , Humanos , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/fisiología , Neoplasias/genética , Microambiente Tumoral , Canales Catiónicos TRPM/genética
7.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106052

RESUMEN

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translational control. However, a lack of technologies to enrich RAPs across many sample types has prevented systematic analysis of RAP number, dynamics, and functions. Here, we have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including DHX30 and LLPH, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development that is linked to the translation of genes with long coding sequences. Finally, we characterized ribosome composition remodeling during immune activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs ranging from those with neuroregulatory functions to those activated by immune stimuli, thereby providing critical insights into how ribosomes are remodeled.

8.
Nat Commun ; 14(1): 6332, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816716

RESUMEN

Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Reposicionamiento de Medicamentos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Combinación de Medicamentos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Línea Celular Tumoral
9.
Nature ; 620(7972): 163-171, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495694

RESUMEN

An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.


Asunto(s)
Ambystoma mexicanum , Evolución Biológica , Biosíntesis de Proteínas , Regeneración , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Ambystoma mexicanum/fisiología , Secuencia de Aminoácidos , Extremidades/fisiología , Regeneración/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cicatrización de Heridas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Especificidad de la Especie , Antioxidantes/metabolismo , Nutrientes/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo
10.
Elife ; 122023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37306301

RESUMEN

The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.


Asunto(s)
Proteínas Ribosómicas , Ribosomas , Animales , Ratones , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Vertebrados/genética , Genoma , Mamíferos/genética
11.
Cancer Res ; 83(1): 130-140, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36264168

RESUMEN

Deregulation of neuroblastoma-derived myc (N-myc) is a leading cause of malignant brain tumors in children. To target N-myc-driven medulloblastoma, most research has focused on identifying genomic alterations or on the analysis of the medulloblastoma transcriptome. Here, we have broadly characterized the translatome of medulloblastoma and shown that N-myc unexpectedly drives selective translation of transcripts that promote protein homeostasis. Cancer cells are constantly exposed to proteotoxic stress associated with alterations in protein production or folding. It remains poorly understood how cancers cope with proteotoxic stress to promote their growth. Here, our data revealed that N-myc regulates the expression of specific components (∼5%) of the protein folding machinery at the translational level through the major cap binding protein, eukaryotic initiation factor eIF4E. Reducing eIF4E levels in mouse models of medulloblastoma blocked tumorigenesis. Importantly, targeting Hsp70, a protein folding chaperone translationally regulated by N-myc, suppressed tumor growth in mouse and human medulloblastoma xenograft models. These findings reveal a previously hidden molecular program that promotes medulloblastoma formation and identify new therapies that may have impact in the clinic. SIGNIFICANCE: Translatome analysis in medulloblastoma shows that N-myc drives selective translation of transcripts that promote protein homeostasis and that represent new therapeutic vulnerabilities.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Meduloblastoma/patología , Factor 4E Eucariótico de Iniciación/genética , Modelos Animales de Enfermedad , Neoplasias Cerebelosas/patología
12.
Sci Adv ; 8(51): eadd3942, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563140

RESUMEN

Translation control is essential in balancing hematopoietic precursors and differentiation; however, the mechanisms underlying this program are poorly understood. We found that the activity of the major cap-binding protein eIF4E is unexpectedly regulated in a dynamic manner throughout erythropoiesis that is uncoupled from global protein synthesis rates. Moreover, eIF4E activity directs erythroid maturation, and increased eIF4E expression maintains cells in an early erythroid state associated with a translation program driving the expression of PTPN6 and Igf2bp1. A cytosine-enriched motif in the 5' untranslated region is important for eIF4E-mediated translation specificity. Therefore, selective translation of key target genes necessary for the maintenance of early erythroid states by eIF4E highlights a unique mechanism used by hematopoietic precursors to rapidly elicit erythropoietic maturation upon need.

13.
Nat Chem ; 14(12): 1443-1450, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36123449

RESUMEN

Ternatin-family cyclic peptides inhibit protein synthesis by targeting the eukaryotic elongation factor-1α. A potentially related cytotoxic natural product ('A3') was isolated from Aspergillus, but only 4 of its 11 stereocentres could be assigned. Here, we synthesized SR-A3 and SS-A3-two out of 128 possible A3 epimers-and discovered that synthetic SR-A3 is indistinguishable from naturally derived A3. Relative to SS-A3, SR-A3 exhibits an enhanced residence time and rebinding kinetics, as revealed by single-molecule fluorescence imaging of elongation reactions catalysed by eukaryotic elongation factor-1α in vitro. An increased residence time-stereospecifically conferred by the unique ß-hydroxyl in SR-A3-was also observed in cells. Consistent with its prolonged duration of action, thrice-weekly dosing with SR-A3 led to a reduced tumour burden and increased survival in an aggressive Myc-driven mouse lymphoma model. Our results demonstrate the potential of SR-A3 as a cancer therapeutic and exemplify an evolutionary mechanism for enhancing cyclic peptide binding kinetics via stereospecific side-chain hydroxylation.


Asunto(s)
Antineoplásicos , Imagen Individual de Molécula , Animales , Ratones , Cinética , Antineoplásicos/farmacología , Péptidos Cíclicos/farmacología
14.
Mol Cell ; 82(14): 2536-2538, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868253

RESUMEN

In this issue of Molecular Cell, Liu et al. (2022) report that 5'-tRFCys, a stress-induced transfer RNA-derived RNA fragment (tRF) derived from the 5' halves of cysteine tRNAs, regulates post-transcriptional gene expression, enabling the survival and lung metastasis formation of breast cancers.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al ARN , Neoplasias de la Mama/genética , Femenino , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Nucleolina
15.
Mol Cell ; 82(12): 2179-2184, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35714581

RESUMEN

The concept of specialized ribosomes has garnered equal amounts of interest and skepticism since it was first introduced. We ask researchers in the field to provide their perspective on the topic and weigh in on the evidence (or lack thereof) and what the future may bring.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Ribosomas/genética , Ribosomas/metabolismo
16.
Mol Cell ; 82(13): 2401-2414.e9, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35597236

RESUMEN

Activated CD8+ T lymphocytes differentiate into heterogeneous subsets. Using super-resolution imaging, we found that prior to the first division, dynein-dependent vesicular transport polarized active TORC1 toward the microtubule-organizing center (MTOC) at the proximal pole. This active TORC1 was physically associated with active eIF4F, required for the translation of c-myc mRNA. As a consequence, c-myc-translating polysomes polarized toward the cellular pole proximal to the immune synapse, resulting in localized c-myc translation. Upon division, the TORC1-eIF4A complex preferentially sorted to the proximal daughter cell, facilitating asymmetric c-Myc synthesis. Transient disruption of eIF4A activity at first division skewed long-term cell fate trajectories to memory-like function. Using a genetic barcoding approach, we found that first-division sister cells often displayed differences in transcriptional profiles that largely correlated with c-Myc and TORC1 target genes. Our findings provide mechanistic insights as to how distinct T cell fate trajectories can be established during the first division.


Asunto(s)
Linfocitos T CD8-positivos , Factor 4F Eucariótico de Iniciación , Diferenciación Celular , Activación de Linfocitos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
17.
EMBO J ; 41(8): e109823, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35315941

RESUMEN

Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.


Asunto(s)
Neoplasias , Biosíntesis de Proteínas , Carcinogénesis , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Mensajero/metabolismo , Microambiente Tumoral
18.
Cell ; 184(20): 5215-5229.e17, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34559986

RESUMEN

Estrogen receptor α (ERα) is a hormone receptor and key driver for over 70% of breast cancers that has been studied for decades as a transcription factor. Unexpectedly, we discover that ERα is a potent non-canonical RNA-binding protein. We show that ERα RNA binding function is uncoupled from its activity to bind DNA and critical for breast cancer progression. Employing genome-wide cross-linking immunoprecipitation (CLIP) sequencing and a functional CRISPRi screen, we find that ERα-associated mRNAs sustain cancer cell fitness and elicit cellular responses to stress. Mechanistically, ERα controls different steps of RNA metabolism. In particular, we demonstrate that ERα RNA binding mediates alternative splicing of XBP1 and translation of the eIF4G2 and MCL1 mRNAs, which facilitates survival upon stress conditions and sustains tamoxifen resistance of cancer cells. ERα is therefore a multifaceted RNA-binding protein, and this activity transforms our knowledge of post-transcriptional regulation underlying cancer development and drug response.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/química , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica , Humanos , Ratones Endogámicos NOD , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Oncogenes , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Tamoxifeno/farmacología , Proteína 1 de Unión a la X-Box/metabolismo
19.
iScience ; 24(7): 102748, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34278258

RESUMEN

The cap-binding protein eukaryotic initiation factor 4E (eIF4E) promotes translation of mRNAs associated with proliferation and survival and is an attractive target for cancer therapeutics. Here, we used Eif4e germline and conditional knockout models to assess the impact of reduced Eif4e gene dosage on B-cell leukemogenesis compared to effects on normal pre-B and mature B-cell function. Using a BCR-ABL-driven pre-B-cell leukemia model, we find that loss of one allele of Eif4e impairs transformation and reduces fitness in competition assays in vitro and in vivo. In contrast, reduced Eif4e gene dosage had no significant effect on development of pre-B and mature B cells or on survival or proliferation of non-transformed B lineage cells. These results demonstrate that inhibition of eIF4E could be a new therapeutic tool for pre-B-cell leukemia while preserving development and function of normal B cells.

20.
Cell Stem Cell ; 28(7): 1183-1185, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214436

RESUMEN

Protein synthesis regulation constitutes a key node in directing decisions between hematopoietic stemness and differentiation. In this issue of Cell Stem Cell, Lv et al. (2021) describe a mechanism by which HSCs fine-tune translation rates by controlling 60S and 40S ribosomal subunit joining through targeted degradation of ZNF622 in response to stress.


Asunto(s)
Células Madre Hematopoyéticas , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA