Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 642: 123194, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37394160

RESUMEN

Metabolic syndrome is a collection of abnormalities, including at least three of the following insulin resistance, hypertension, dyslipidemia, type 2 diabetes, obesity, inflammation, and non-alcoholic fatty liver disease. 3D printed solid dosage forms have emerged as a promising tool enabling the fabrication of personalized medicines and offering solutions that cannot be achieved by industrial mass production. Most attempts found in the literature to manufacture polypills for this syndrome contain just two drugs. However, most fixed-dose combination (FDC) products in clinical practice required the use of three or more drugs. In this work, Fused deposition modelling (FDM) 3D printing technology coupled with hot-melt extrusion (HME) has been successfully applied in the manufacture of polypills containing nifedipine (NFD), as an antihypertensive drug, simvastatin (SMV), as an antihyperlipidemic drug, and gliclazide (GLZ) as an antiglycemic drug. Hanssen solubility parameters (HSPs) were utilized as predictors to guide the formation of amorphous solid dispersion between drug and polymer to ensure miscibility and enhanced oral bioavailability. The HSP varied from 18.3 for NFD, 24.6 for SMV, and 7.0 for GLZ while the total solubility parameter for the excipient mixture was 27.30.5. This allowed the formation of an amorphous solid dispersion in SMV and GLZ 3D printed tablets compared to NFD which was partially crystalline. Popypill showed a dual release profile combining a faster SMV release (< 6h) with a 24 h sustained release for NDF and GLZ. This work demonstrated the transformation of FDC into dynamic dose-personalized polypills.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Humanos , Liberación de Fármacos , Tecnología Farmacéutica , Síndrome Metabólico/tratamiento farmacológico , Solubilidad , Comprimidos/química , Impresión Tridimensional
2.
Pharmaceutics ; 15(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36839636

RESUMEN

3D printing technologies enable medicine customization adapted to patients' needs. There are several 3D printing techniques available, but majority of dosage forms and medical devices are printed using nozzle-based extrusion, laser-writing systems, and powder binder jetting. 3D printing has been demonstrated for a broad range of applications in development and targeting solid, semi-solid, and locally applied or implanted medicines. 3D-printed solid dosage forms allow the combination of one or more drugs within the same solid dosage form to improve patient compliance, facilitate deglutition, tailor the release profile, or fabricate new medicines for which no dosage form is available. Sustained-release 3D-printed implants, stents, and medical devices have been used mainly for joint replacement therapies, medical prostheses, and cardiovascular applications. Locally applied medicines, such as wound dressing, microneedles, and medicated contact lenses, have also been manufactured using 3D printing techniques. The challenge is to select the 3D printing technique most suitable for each application and the type of pharmaceutical ink that should be developed that possesses the required physicochemical and biological performance. The integration of biopharmaceuticals and nanotechnology-based drugs along with 3D printing ("nanoprinting") brings printed personalized nanomedicines within the most innovative perspectives for the coming years. Continuous manufacturing through the use of 3D-printed microfluidic chips facilitates their translation into clinical practice.

3.
Pharmaceutics ; 14(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365198

RESUMEN

Even though more than two years have passed since the emergence of COVID-19, the research for novel or repositioned medicines from a natural source or chemically synthesized is still an unmet clinical need. In this review, the application of supercritical fluids to the development of novel or repurposed medicines for COVID-19 and their secondary bacterial complications will be discussed. We envision three main applications of the supercritical fluids in this field: (i) drug micronization, (ii) supercritical fluid extraction of bioactives and (iii) sterilization. The supercritical fluids micronization techniques can help to improve the aqueous solubility and oral bioavailability of drugs, and consequently, the need for lower doses to elicit the same pharmacological effects can result in the reduction in the dose administered and adverse effects. In addition, micronization between 1 and 5 µm can aid in the manufacturing of pulmonary formulations to target the drug directly to the lung. Supercritical fluids also have enormous potential in the extraction of natural bioactive compounds, which have shown remarkable efficacy against COVID-19. Finally, the successful application of supercritical fluids in the inactivation of viruses opens up an opportunity for their application in drug sterilization and in the healthcare field.

4.
Int J Pharm ; 473(1-2): 148-57, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24998510

RESUMEN

Amphotericin B (AmB) has a broad antifungal and leishmanicidal activity with low incidence of clinical resistance. Its parenteral administration has high risk of nephrotoxicity that limits its use. In order to treat cutaneous infections, AmB topical administration is a safer therapy because of the low systemic absorption of the drug across mucous membranes. Moreover, in some developing countries both fungal topical infections and cutaneous leishmaniasis are an important health problem. The aim of this work is to formulate a topical amphotericin preparation and test its in vitro antifungal (against 11 different fungal species) and antileishmanial activity. γ-Cyclodextrin (γ-CD) was chosen to solubilise AmB. Furthermore, γ-CD has shown a synergistic effect on membrane destabilization with AmB. Topical novel formulations based on AmB-CD complex have exhibited greater antifungal activity (48%, 28% and 60% higher) when compared to AmB Neo-Sensitabs(®) disks, AmB dissolved in dimethyl sulfoxide (DMSO) and Clotrimazole(®) cream, respectively. Furthermore, AmB-CD methyl cellulose gel has shown significantly higher inhibition activity on biofilm formation, larger penetration through yeast biofilms and higher fungicidal activity on biofilm cells compared to AmB dissolved in DMSO. In addition, AmB-CD gel exhibited both high in vitro leishmanicidal efficacy with wider therapeutic index (between 2 and 8-fold higher than AmB deoxycholate depending on Leishmania spp.) and also in vivo activity in an experimental model of cutaneous leishmaniasis. These results illustrate the feasibility of a topical AmB formulation easy to prepare, physicochemically stable over 6 months, safe and effective against diverse fungal and parasitic cutaneous infections.


Asunto(s)
Anfotericina B/química , Antifúngicos/química , Antiprotozoarios/química , gamma-Ciclodextrinas/química , Administración Tópica , Anfotericina B/farmacología , Animales , Antifúngicos/farmacología , Antiprotozoarios/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Estabilidad de Medicamentos , Excipientes/química , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Geles , Leishmania/efectos de los fármacos , Leishmania/crecimiento & desarrollo , Ratones , Tamaño de la Partícula , Crema para la Piel , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA