RESUMEN
BACKGROUND AND AIMS: Elderly familial hypercholesterolemia (FH) patients are at high risk of coronary heart disease (CHD) due to high cholesterol burden and late onset of effective cholesterol-lowering therapies. A subset of these individuals remains free from any CHD event, indicating the potential presence of protective factors. Identifying possible cardioprotective gene expression profiles could contribute to our understanding of CHD prevention and future preventive treatment. Therefore, this study aimed to investigate gene expression profiles in elderly event-free FH patients. METHODS: Expression of 773 genes was analysed using the Nanostring Metabolic Pathways Panel, in peripheral blood mononuclear cells (PBMCs) from FH patients ≥65 years without CHD (FH event-free, n = 44) and with CHD (FH CHD, n = 39), and from healthy controls ≥70 years (n = 39). RESULTS: None of the genes were differentially expressed between FH patients with and without CHD after adjusting for multiple testing. However, at nominal p < 0.05, we found 36 (5%) differentially expressed genes (DEGs) between the two FH groups, mainly related to lipid metabolism (e.g. higher expression of ABCA1 and ABCG1 in FH event-free) and immune responses (e.g. lower expression of STAT1 and STAT3 in FH event-free). When comparing FH patients to controls, the event-free group had fewer DEGs than the CHD group; 147 (19%) and 219 (28%) DEGs, respectively. CONCLUSIONS: Elderly event-free FH patients displayed a different PBMC gene expression profile compared to FH patients with CHD. Differences in gene expression compared to healthy controls were more pronounced in the CHD group, indicating a less atherogenic gene expression profile in event-free individuals. Overall, identification of cardioprotective factors could lead to future therapeutic targets.
Asunto(s)
Enfermedad Coronaria , Perfilación de la Expresión Génica , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/sangre , Masculino , Femenino , Anciano , Enfermedad Coronaria/genética , Estudios de Casos y Controles , Leucocitos Mononucleares/metabolismo , Factores de Edad , Transcriptoma , Anciano de 80 o más AñosRESUMEN
The scientific evidence supporting the current dietary recommendations for fat quality keeps accumulating; however, a paradoxical distrust has taken root among many researchers, clinicians, and in parts of the general public. One explanation for this distrust may relate to an incomplete overview of the totality of the evidence for the link between fat quality as a dietary exposure, and health outcomes such as atherosclerotic cardiovascular disease (ASCVD). Therefore, the main aim of the present narrative review was to provide a comprehensive overview of the rationale for dietary recommendations for fat intake, limiting our discussion to ASCVD as outcome. Herein, we provide a core framework - a causal model - that can help us understand the evidence that has accumulated to date, and that can help us understand new evidence that may become available in the future. The causal model for fat quality and ASCVD is comprised of three key research questions (RQs), each of which determine which scientific methods are most appropriate to use, and thereby which lines of evidence that should feed into the causal model. First, we discuss the link between low-density lipoprotein (LDL) particles and ASCVD (RQ1); we draw especially on evidence from genetic studies, randomized controlled trials (RCTs), epidemiology, and mechanistic studies. Second, we explain the link between dietary fat quality and LDL particles (RQ2); we draw especially on metabolic ward studies, controlled trials (randomized and non-randomized), and mechanistic studies. Third, we explain the link between dietary fat quality, LDL particles, and ASCVD (RQ3); we draw especially on RCTs in animals and humans, epidemiology, population-based changes, and experiments of nature. Additionally, the distrust over dietary recommendations for fat quality may partly relate to an unclear understanding of the scientific method, especially as applied in nutrition research, including the process of developing dietary guidelines. We therefore also aimed to clarify this process. We discuss how we assess causality in nutrition research, and how we progress from scientific evidence to providing dietary recommendations.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Animales , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/complicaciones , Grasas de la Dieta , Lipoproteínas , Lipoproteínas LDL , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Cardiovascular disease (CVD) is a leading cause of death worldwide. Supplementation with the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is associated with lower CVD risk. However, results from randomized controlled trials that examine the effect of omega-3 supplementation on CVD risk are inconsistent. This risk-reducing effect may be mediated by reducing inflammation, oxidative stress and serum triglyceride (TG) levels. However, not all individuals respond by reducing TG levels after omega-3 supplementation. This inter-individual variability in TG response to omega-3 supplementation is not fully understood. Hence, we aim to review the evidence for how interactions between omega-3 fatty acid supplementation and genetic variants, epigenetic and gene expression profiling, gut microbiota and habitual intake of omega-3 fatty acids can explain why the TG response differs between individuals. This may contribute to understanding the current controversies and play a role in defining future personalized guidelines to prevent CVD.
Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Humanos , Triglicéridos , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosahexaenoicos , Enfermedades Cardiovasculares/prevención & control , Suplementos DietéticosRESUMEN
BACKGROUND: Metabotyping is a novel concept to group metabolically similar individuals. Different metabotypes may respond differently to dietary interventions; hence, metabotyping may become an important future tool in precision nutrition strategies. However, it is not known if metabotyping based on comprehensive omic data provides more useful identification of metabotypes compared to metabotyping based on only a few clinically relevant metabolites. AIM: This study aimed to investigate if associations between habitual dietary intake and glucose tolerance depend on metabotypes identified from standard clinical variables or comprehensive nuclear magnetic resonance (NMR) metabolomics. METHODS: We used cross-sectional data from participants recruited through advertisements aimed at people at risk of type 2 diabetes mellitus (n = 203). Glucose tolerance was assessed with a 2-h oral glucose tolerance test (OGTT), and habitual dietary intake was recorded with a food frequency questionnaire. Lipoprotein subclasses and various metabolites were quantified with NMR spectroscopy, and plasma carotenoids were quantified using high-performance liquid chromatography. We divided participants into favorable and unfavorable clinical metabotypes based on established cutoffs for HbA1c and fasting and 2-h OGTT glucose. Favorable and unfavorable NMR metabotypes were created using k-means clustering of NMR metabolites. RESULTS: While the clinical metabotypes were separated by glycemic variables, the NMR metabotypes were mainly separated by variables related to lipoproteins. A high intake of vegetables was associated with a better glucose tolerance in the unfavorable, but not the favorable clinical metabotype (interaction, p = 0.01). This interaction was confirmed using plasma concentrations of lutein and zeaxanthin, objective biomarkers of vegetable intake. Although non-significantly, the association between glucose tolerance and fiber intake depended on the clinical metabotypes, while the association between glucose tolerance and intake of saturated fatty acids and dietary fat sources depended on the NMR metabotypes. CONCLUSION: Metabotyping may be a useful tool to tailor dietary interventions that will benefit specific groups of individuals. The variables that are used to create metabotypes will affect the association between dietary intake and disease risk.
RESUMEN
Background and aims: The concentration and the duration of exposure to low-density lipoprotein cholesterol (LDL-C) (LDL-C burden) is an important determinant of risk for cardiovascular disease and thresholds has recently been estimated. Individuals with familial hypercholesterolemia (FH) have increased risk of premature cardiovascular disease. The overall aim of the present study was to describe differences in LDL-C level and LDL-C burden in females and males with FH visiting an outpatient lipid clinic from a young age, using multiple LDL-C measurements during a follow-up time of 12 years. First, we aimed to study if the LDL-C concentration and the LDL-C burden is different between females and males at ages 0-10, 10-20, 20-30 and >30 years. Second, we aimed to estimate the subject-specific LDL-C burden at age 19 and 30 years, and the proportion of female and male patients that reach suggested LDL-C thresholds indicating high risk of ASCVD. Methods: Data was retrospectively collected from medical records of 438 subjects (207 girls and 231 boys) with FH, referred to the Lipid Clinic, Oslo University Hospital below the age of 19 years. The LDL-C burden was estimated based on repeated LDL-C measurements over time. Results: Subjects were followed over a period of mean 12.0 (SD 7.0) years, with median 10 years (7-17; 25-75 percentiles, minimum 2), with median 6 (4-9; 25-75 percentiles, minimum 2) available LDL-C measurements, starting at mean age 11 (SD 3.9) years. There was a difference in both LDL-C and LDL-C burden between sexes at different ages. On average, males had lower LDL-C over time, although this difference was less pronounced with age and males also had lower estimated LDL-C burden over time, and this difference was further exacerbated with age. Conclusion: Our study shows that young women with FH have a higher LDL-C burden than their male counterparts, potentially explaining the increased excess CVD risk seen among these. It underscores the importance of careful-follow up and early treatment initiation both prior to and after pregnancies in order to limit statin-free periods.
RESUMEN
Introduction: Avian eggshell membrane (ESM) is a complex extracellular matrix comprising collagens, glycoproteins, proteoglycans, and hyaluronic acid. We have previously demonstrated that ESM possesses anti-inflammatory properties in vitro and regulates wound healing processes in vivo. The present study aimed to investigate if oral intake of micronized ESM could attenuate skeletal muscle aging associated with beneficial alterations in gut microbiota profile and reduced inflammation. Methods: Elderly male C57BL/6 mice were fed an AIN93G diet supplemented with 0, 0.1, 1, or 8% ESM. Young mice were used as reference. The digestibility of ESM was investigated using the static in vitro digestion model INFOGEST for older people and adults, and the gut microbiota profile was analyzed in mice. In addition, we performed a small-scale pre-clinical human study with healthy home-dwelling elderly (>70 years) who received capsules with a placebo or 500 mg ESM every day for 4 weeks and studied the effect on circulating inflammatory markers. Results and discussion: Intake of ESM in elderly mice impacted and attenuated several well-known hallmarks of aging, such as a reduction in the number of skeletal muscle fibers, the appearance of centronucleated fibers, a decrease in type IIa/IIx fiber type proportion, reduced gene expression of satellite cell markers Sdc3 and Pax7 and increased gene expression of the muscle atrophy marker Fbxo32. Similarly, a transition toward the phenotypic characteristics of young mice was observed for several proteins involved in cellular processes and metabolism. The digestibility of ESM was poor, especially for the elderly condition. Furthermore, our experiments showed that mice fed with 8% ESM had increased gut microbiota diversity and altered microbiota composition compared with the other groups. ESM in the diet also lowered the expression of the inflammation marker TNFA in mice and in vitro in THP-1 macrophages. In the human study, intake of ESM capsules significantly reduced the inflammatory marker CRP. Altogether, our results suggest that ESM, a natural extracellular biomaterial, may be attractive as a nutraceutical candidate with a possible effect on skeletal muscle aging possibly through its immunomodulating effect or gut microbiota.
RESUMEN
Food protein or food-derived peptides may regulate blood glucose levels; however, studies have shown inconsistent results. The aim of the present study was to characterize subgroups of individuals with increased risk of type 2 diabetes (T2D) and to investigate the cardiometabolic effects of fish protein in the same subgroups. We first divided participants into high insuliniAUC and low insuliniAUC subjects based on their insulin incremental area under the curve (iAUC) levels after a 2 h oral glucose tolerance test (OGTT), and secondly based on whether they had received 5.2 g salmon fish protein or placebo for 8 weeks, in a previously conducted randomized controlled trial (RCT). We then profiled these groups by analyzing plasma metabolomics and peripheral blood mononuclear cell (PBMC) gene expression. Compared to the low insuliniAUC group, the high insuliniAUC group had higher plasma concentrations of monounsaturated fatty acids (MUFAs) and glycated proteins (GlycA) and lower concentrations of glycine and acetate. After intervention with fish protein compared to placebo, however, only acetate was significantly increased in the low insuliniAUC group. In conclusion, we identified metabolic biomarkers known to be associated with T2D; also, intervention with fish protein did not affect cardiometabolic risk markers in subgroups with increased risk of T2D.
Asunto(s)
Diabetes Mellitus Tipo 2 , Ácidos Grasos Monoinsaturados , Animales , Proteinas Glicosiladas , Glucemia/metabolismo , Glicina , Biomarcadores , Insulina , Acetatos , Proteínas de PecesRESUMEN
The current epidemics of cardiovascular and metabolic noncommunicable diseases have emerged alongside dramatic modifications in lifestyle and living environments. These correspond to changes in our "modern" postwar societies globally characterized by rural-to-urban migration, modernization of agricultural practices, and transportation, climate change, and aging. Evidence suggests that these changes are related to each other, although the social and biological mechanisms as well as their interactions have yet to be uncovered. LongITools, as one of the 9 projects included in the European Human Exposome Network, will tackle this environmental health equation linking multidimensional environmental exposures to the occurrence of cardiovascular and metabolic noncommunicable diseases.
RESUMEN
SCOPE: The aim of this study is to explore the molecular mechanisms underlying the effect of replacing dietary saturated fat (SFA) with polyunsaturated fat (PUFA) on cardiovascular disease (CVD) risk using a whole transcriptome approach. METHODS AND RESULTS: Healthy subjects with moderate hypercholesterolemia (n = 115) are randomly assigned to a control diet (C-diet) group or an experimental diet (Ex-diet) group receiving comparable food items with different fatty acid composition for 8 weeks. RNA isolated from peripheral blood mononuclear cells (PBMCs) at baseline and after 8 weeks of intervention is analyzed by microarray technology (n = 95). By use of a linear regression model (n = 92), 14 gene transcripts are differentially altered in the Ex-diet group compared to the C-diet group. These include transcripts related to vascular smooth muscle cell proliferation, low-density lipoprotein receptor folding, and regulation of blood pressure. Furthermore, pathways mainly related to immune response and inflammation, signal transduction, development, and cytoskeleton remodeling, gene expression and protein function, are differentially enriched between the groups. CONCLUSION: Replacing dietary SFA with PUFA for 8 weeks modulates PBMC gene expression and pathways related to CVD risk in healthy subjects with moderate hypercholesterolemia.
Asunto(s)
Enfermedades Cardiovasculares , Leucocitos Mononucleares , Enfermedades Cardiovasculares/genética , Grasas de la Dieta/efectos adversos , Ácidos Grasos , Humanos , TranscriptomaRESUMEN
SCOPE: It is aimed to investigate how intake of high-fat meals composed of different dairy products with a similar fat content affects postprandial peripheral blood mononuclear cell (PBMC) expression of inflammation-related genes, as well as circulating inflammatory markers and metabolites. METHODS AND RESULTS: Healthy subjects (n = 47) consume four different high-fat meals composed of either butter, cheese, whipped cream, or sour cream in a randomized controlled cross-over study. Fasting and postprandial PBMC gene expression, plasma metabolites, and circulating inflammatory markers are measured. Using a linear mixed model, it is found that expression of genes related to lymphocyte activation, cytokine signaling, chemokine signaling, and cell adhesion is differentially altered between the four meals. In general, intake of the fermented products cheese and sour cream reduces, while intake of the non-fermented products butter and whipped cream increases, expression of these genes. Plasma amino acid concentrations increase after intake of cheese compared to the other meals, and the amino acid changes correlate with several of the differentially altered genes. CONCLUSION: Intake of fermented dairy products, especially cheese, induces a less inflammatory postprandial PBMC gene expression response than non-fermented dairy products. These findings may partly explain inconsistent findings in studies on health effects of dairy products.
Asunto(s)
Productos Lácteos Cultivados , Expresión Génica/fisiología , Inflamación/sangre , Leucocitos Mononucleares/fisiología , Periodo Posprandial/genética , Adulto , Biomarcadores/sangre , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Inflamación/dietoterapia , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Periodo Posprandial/fisiología , Adulto JovenRESUMEN
BACKGROUND: Adequate protein intake among older adults is associated with better health outcomes such as immune function and metabolic regulation of skeletal muscle, but conflicting results make it difficult to define the optimal intake. To further understand the impact of protein intake on metabolic processes, the aim of the study was to explore genome-wide gene expression changes in peripheral blood mononuclear cells (PBMCs) in home-dwelling old subjects after increased protein intake for 12 weeks. METHOD: In a parallel double-blind randomized controlled intervention study, subjects (≥ 70 years) received a protein-enriched milk (2 × 20 g protein/day, n = 14, mean (±SD) age 76.9 ± 4.9 years) or an isocaloric carbohydrate drink (n = 17, mean (±SD) age 77.7 ± 4.8 years) for breakfast and evening meal for 12 weeks. PBMCs were isolated before and after the intervention. Microarray analysis was performed using Illumina technology. Serum levels of gut peptides and insulin growth factor (IGF)-1 were also measured. RESULTS: In total 758 gene transcripts were regulated after increased protein intake, and 649 gene transcripts were regulated after intake of carbohydrates (p < 0.05). Forty-two of these genes were overlapping. After adjusting for multiple testing, 27 of the 758 gene transcripts were regulated (FDR, q-value < 0.25) after protein intake. Of these 25 were upregulated and two downregulated. In particular, genes and signaling pathways involved in pro-opiomelanocortin (POMC) processing, immune function, and IGF signaling were significantly altered. CONCLUSIONS: PBMCs can be used to study gene expression changes after long-term protein intake, as many signaling pathways were regulated after increased protein intake. The functional significance of these findings needs to be further investigated. TRIAL REGISTRATION: ClinicalTrials.gov, ID no. NCT02218333. The study was registered on August 18, 2014.
RESUMEN
A healthy dietary pattern is associated with a lower risk of metabolic syndrome (MetS) and reduced inflammation. To explore this at the molecular level, we investigated the effect of a Nordic diet (ND) on changes in the gene expression profiles of inflammatory and lipid-related genes in peripheral blood mononuclear cells (PBMCs) of individuals with MetS. We hypothesized that the intake of an ND compared to a control diet (CD) would alter the expression of inflammatory genes and genes involved in lipid metabolism. The individuals with MetS underwent an 18/24-week randomized intervention to compare a ND with a CD. Eighty-eight participants (66% women) were included in this sub-study of the larger SYSDIET study. Fasting PBMCs were collected before and after the intervention and changes in gene expression levels were measured using TaqMan Array Micro Fluidic Cards. Forty-eight pre-determined inflammatory and lipid related gene transcripts were analyzed. The expression level of the gene tumor necrosis factor (TNF) receptor superfamily member 1A (TNFRSF1A) was down-regulated (p = 0.004), whereas the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit, RELA proto-oncogene, was up-regulated (p = 0.016) in the ND group compared to the CD group. In conclusion, intake of an ND in individuals with the MetS may affect immune function.
Asunto(s)
Dietoterapia , Leucocitos Mononucleares/efectos de los fármacos , Síndrome Metabólico/dietoterapia , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Transcripción ReIA/metabolismo , Adulto , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Proto-Oncogenes Mas , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Transcripción ReIA/genética , TranscriptomaRESUMEN
BACKGROUND: Intake of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) reduces fasting triglyceride (TG) levels and may thereby lower cardiovascular disease risk. However, there are large inter-individual differences in the TG-lowering effect of omega-3 supplementation. Genotype differences partly explain this variation, but gene-environment interactions leading to gene expression differences may also be important. In this study, we aimed to investigate baseline differences and differences in the change in peripheral blood mononuclear cell (PBMC) gene expression and lipoprotein subclass TG levels between TG responders and non-responders to omega-3 fatty acid supplementation. METHODS: In a previous randomized controlled trial, healthy normotriglyceridemic subjects (n = 35, 71% women) received 1.6 g EPA + DHA/day for 7 weeks. In this exploratory sub-study, we defined TG responders as subjects having a TG reduction beyond the 20% day-to-day variation and non-responders as having a TG change between - 20% and + 20% after omega-3 supplementation. PBMC gene expression was measured using microarray, and lipoprotein subclasses were measured using nuclear magnetic resonance spectroscopy. RESULTS: Eight subjects were defined as responders with a median TG reduction of 37%, and 16 subjects were defined as non-responders with a median TG change of 0%. At baseline, responders had higher TG levels in two of four high-density lipoprotein (HDL) subclasses and 909 gene transcripts (p ≤ 0.05) were differentially expressed compared to non-responders. During the intervention, the plasma TG reduction among responders was reflected in TG reductions in four of six different very low-density lipoprotein subclasses and three of four different HDL subclasses. Compared to non-responders, the expression of 454 transcripts was differentially altered in responders (p ≤ 0.05). Pathway analyses revealed that responders had altered signaling pathways related to development and immune function. In addition, two of the top 10 enriched pathways in responders compared to non-responders were related to lysophosphatidic acid signaling. CONCLUSION: TG responders and non-responders to omega-3 supplementation have different lipoprotein subclass and PBMC gene expression profiles at baseline and different lipoprotein subclass and PBMC gene expression responses to omega-3 supplementation. These gene expression differences may partially explain the variability in TG response observed after omega-3 supplementation. GRAPHICAL ABSTRACT: Based on free images from Servier Medical Art (Creative Commons Attribution License) and image from www.colourbox.com.
RESUMEN
SCOPE: To explore the effect of a healthy Nordic diet on the global transcriptome profile in peripheral blood mononuclear cells (PBMCs) of subjects with metabolic syndrome. METHODS AND RESULTS: Subjects with metabolic syndrome undergo a 18/24 week randomized intervention study comparing an isocaloric healthy Nordic diet with an average habitual Nordic diet served as control (SYSDIET study). Altogether, 68 participants are included. PBMCs are obtained before and after intervention and total RNA is subjected to global transcriptome analysis. 1302 probe sets are differentially expressed between the diet groups (p-value < 0.05). Twenty-five of these are significantly regulated (FDR q-value < 0.25) and are mainly involved in mitochondrial function, cell growth, and cell adhesion. The list of 1302 regulated probe sets is subjected to functional analyses. Pathways and processes involved in the mitochondrial electron transport chain, immune response, and cell cycle are downregulated in the healthy Nordic diet group. In addition, gene transcripts with common motifs for 42 transcription factors, including NFR1, NFR2, and NF-κB, are downregulated in the healthy Nordic diet group. CONCLUSION: These results suggest that benefits of a healthy diet may be mediated by improved mitochondrial function and reduced inflammation.
RESUMEN
Marine n-3 (omega-3) fatty acids alter gene expression by regulating the activity of transcription factors. Krill oil is a source of marine n-3 fatty acids that has been shown to modulate gene expression in animal studies; however, the effect in humans is not known. Hence, we aimed to compare the effect of intake of krill oil, lean and fatty fish with a similar content of n-3 fatty acids, and high-oleic sunflower oil (HOSO) with added astaxanthin on the expression of genes involved in glucose and lipid metabolism and inflammation in peripheral blood mononuclear cells (PBMC) as well as circulating inflammatory markers. In an 8-week trial, healthy men and women aged 18-70 years with fasting TAG of 1·3-4·0 mmol/l were randomised to receive krill oil capsules (n 12), HOSO capsules (n 12) or lean and fatty fish (n 12). The weekly intakes of marine n-3 fatty acids from the interventions were 4654, 0 and 4103 mg, respectively. The mRNA expression of four genes, PPAR γ coactivator 1A (PPARGC1A), steaoryl-CoA desaturase (SCD), ATP binding cassette A1 (ABCA1) and cluster of differentiation 40 (CD40), were differently altered by the interventions. Furthermore, within-group analyses revealed that krill oil down-regulated the mRNA expression of thirteen genes, including genes involved in glucose and cholesterol metabolism and ß-oxidation. Fish altered the mRNA expression of four genes and HOSO down-regulated sixteen genes, including several inflammation-related genes. There were no differences between the groups in circulating inflammatory markers after the intervention. In conclusion, the intake of krill oil and HOSO with added astaxanthin alter the PBMC mRNA expression of more genes than the intake of fish.
RESUMEN
Fish consumption and supplementation with n-3 fatty acids reduce CVD risk. Krill oil is an alternative source of marine n-3 fatty acids and few studies have investigated its health effects. Thus, we compared krill oil supplementation with the intake of fish with similar amounts of n-3 fatty acids on different cardiovascular risk markers. In an 8-week randomised parallel study, thirty-six healthy subjects aged 18-70 years with fasting serum TAG between 1·3 and 4·0 mmol/l were randomised to receive either fish, krill oil or control oil. In the fish group, subjects consumed lean and fatty fish, according to dietary guidelines. The krill and control group received eight capsules per d containing 4 g oil per d. The weekly intake of marine n-3 fatty acids from fish given in the fish group and from krill oil in the krill group were 4103 and 4654 mg, respectively. Fasting serum TAG did not change between the groups. The level of total lipids (P = 0·007), phospholipids (P = 0·015), cholesterol (P = 0·009), cholesteryl esters (P = 0·022) and non-esterified cholesterol (P = 0·002) in the smallest VLDL subclass increased significantly in response to krill oil supplementation. Blood glucose decreased significantly (P = 0·024) in the krill group and vitamin D increased significantly in the fish group (P = 0·024). Furthermore, plasma levels of marine n-3 fatty acids increased significantly in the fish and krill groups compared with the control (all P ≤ 0·0003). In conclusion, supplementation with krill oil and intake of fish result in health-beneficial effects. Although only krill oil reduced fasting glucose, fish provide health-beneficial nutrients, including vitamin D.
RESUMEN
Fish oil (FO) supplementation reduces the risk of CVD. However, it is not known if FO of different qualities have different effects on lipoprotein subclasses in humans. We aimed at investigating the effects of oxidised FO and high-quality FO supplementation on lipoprotein subclasses and their lipid concentrations in healthy humans. In all, fifty-four subjects completed a double-blind randomised controlled intervention study. The subjects were randomly assigned to receive high-quality FO (n 17), oxidised FO (n 18) or high-oleic sunflower oil capsules (HOSO, n 19) for 7 weeks. The concentration of marine n-3 fatty acids was equal in high-quality FO and oxidised FO (1·6 g EPA+DHA/d). The peroxide value (PV) and anisidine value (AV) were 4 mEq/kg and 3 in high-quality FO and HOSO, whereas the PV and AV in the oxidised FO were 18 mEq/kg and 9. Blood samples were collected at baseline and end of study. NMR spectroscopy was applied for the analysis of lipoprotein subclasses and their lipid concentrations. High-quality FO reduced the concentration of intermediate-density lipoprotein (IDL) particles and large, medium and small LDL particles, as well as the concentrations of total lipids, phospholipids, total cholesterol, cholesteryl esters and free cholesterol in IDL and LDL subclasses compared with oxidised FO and HOSO. Hence, high-quality FO and oxidised FO differently affect lipid composition in lipoprotein subclasses, with a more favourable effect mediated by high-quality FO. In future trials, reporting the oxidation levels of FO would be useful.