Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Small ; : e2403661, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994824

RESUMEN

Efficient conversion of biomass wastes into valuable chemicals has been regarded as a sustainable approach for green and circular economy. Herein, a highly efficient catalytic conversion of glycerol (Gly) into glycerol carbonate (GlyC) by carbonylation with the commercially available urea is presented using low-cost transition metal single atoms supported on zinc oxide quantum dots (M1-ZnO QDs) as a catalyst without using any solvent. A facile one-step wet chemical synthesis allows various types of metal single atoms to simultaneously dope and introduce Lewis-acid defects in the ZnO QD structure. It is found that doping with a trace amount of isolated metal atoms greatly boosts the catalytic activity with Gly conversion of 90.7%, GlyC selectivity of 100.0%, and GlyC yield of 90.6%. Congruential results from both Density Functional Theory (DFT) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) studies reveal that the superior catalytic performance can be attributed to the enriched Lewis acid sites that endow optimal adsorption, formation of the intermediate for coupling between urea and Gly, and desorption of GlyC. Moreover, the tiny size of ZnO QDs efficiently promotes the accessibility of these active sites to the reactants.

2.
Nanoscale ; 16(2): 678-690, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37964613

RESUMEN

Manganese dioxide, ß-MnO2, has shown potential in catalyzing the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a monomer of bioplastic polyethylene furanoate (PEF). Herein, the insight into the hydroxy (OH) and surface oxygen effects on the HMF-to-FDCA reaction over ß-MnO2 is clarified through a comprehensive investigation using density functional theory (DFT) calculations, microkinetic modeling, and experiment. Theoretical analyses revealed that both active surface oxygen and OH species (from either base or solvent) facilitate C-H bond breaking and OH insertion, promoting the catalytic activity of ß-MnO2. Microkinetic modeling demonstrated that the FFCA-to-FDCA and DFF-to-FFCA steps are the rate-limiting steps of the hydroxylated and non-hydroxylated surfaces, respectively. These theoretical results agree well with the experiment when water and dimethyl sulfoxide (DMSO) were used as solvents. In addition, the synthesized ß-MnO2 catalyst showed high stability and activity, maintaining stable HMF conversion (≥99 mol%) and high FDCA yield (85-92 mol%) during continuous flow oxidation for 72 hours at pO2 of 1 MPa, 393 K and LHSV of 1 h-1. Thus, considering both hydroxy and surface oxygen species is a new strategy for enhancing the catalytic activity of Mn oxides and other metal oxide catalysts for the HMF-to-FDCA reaction.

3.
Chempluschem ; 88(11): e202300326, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37786294

RESUMEN

5-Hydroxymethylfurfural (5-HMF) synthesized through glucose conversion requires Lewis acid (L) site for isomerization and Brønsted acid (B) site for dehydration. The objective of this work is to investigate the influence of the metal type of Al-SBA-15-supported phosphates of Cr, Zr, Nb, Sr, and Sn on glucose conversion to 5-HMF in a NaCl-H2 O/n-butanol biphasic solvent system. The structural and acid property of all supported metal phosphate samples were fully verified by several spectroscopic methods. Among those catalysts, CrPO/Al-SBA-15 provided the best performance with the highest glucose conversion and 5-HMF yield, corresponding to the highest total acidity of 0.65 mmol/g and optimal L/B ratio of 1.88. For CrPO/Al-SBA-15, another critical parameter is the phosphate-to-chromium ratio. Moreover, DFT simulation of glucose conversion to 5-HMF on the surface of the optimized chromium phosphate structure reveals three steps of fructose dehydration on the Brønsted acid site. Finally, the optimum reaction condition, reusability, and leaching test of the best catalyst were determined. CrPO/Al-SBA-15 is a promising catalyst for glucose conversion to high-value-added chemicals in future biorefinery production.

4.
ACS Appl Mater Interfaces ; 15(22): 26700-26709, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37218929

RESUMEN

Catalytic partial oxidation of methane presents a promising route to convert the abundant but environmentally undesired methane gas to liquid methanol with applications as an energy carrier and a platform chemical. However, an outstanding challenge for this process remains in developing a catalyst that can oxidize methane selectively to methanol with good activity under continuous flow conditions in the gas phase using O2 as an oxidant. Here, we report a Fe catalyst supported by a metal-organic framework (MOF), Fe/UiO-66, for the selective and on-stream partial oxidation of methane to methanol. Kinetic studies indicate the continuous production of methanol at a superior reaction rate of 5.9 × 10-2 µmolMeOH gFe-1 s-1 at 180 °C and high selectivity toward methanol, with the catalytic turnover verified by transient methane isotopic measurements. Through an array of spectroscopic characterizations, electron-deficient Fe species rendered by the MOF support is identified as the probable active site for the reaction.

5.
Angew Chem Int Ed Engl ; 62(30): e202301920, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37074965

RESUMEN

Elucidating the reaction mechanism in heterogeneous catalysis is critically important for catalyst development, yet remains challenging because of the often unclear nature of the active sites. Using a molecularly defined copper single-atom catalyst supported by a UiO-66 metal-organic framework (Cu/UiO-66) allows a detailed mechanistic elucidation of the CO oxidation reaction. Based on a combination of in situ/operando spectroscopies, kinetic measurements including kinetic isotope effects, and density-functional-theory-based calculations, we identified the active site, reaction intermediates, and transition states of the dominant reaction cycle as well as the changes in oxidation/spin state during reaction. The reaction involves the continuous reactive dissociation of adsorbed O2 , by reaction of O2,ad with COad , leading to the formation of an O atom connecting the Cu center with a neighboring Zr4+ ion as the rate limiting step. This is removed in a second activated step.

6.
ChemSusChem ; 15(5): e202102653, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34982851

RESUMEN

Determining the roles of surface functionality of heterogeneous acid catalysts is important for many industrial catalysts. In this study, the decisive structure of metal-organic frameworks (MOFs) is utilized to identify important features for the effective conversion of d-xylose into lactic acid. Several acidic MOFs are tested and the combination of Lewis acidity and adjacent hydroxy sites is found to be critical to attain high lactic acid yields. This hypothesis is corroborated experimentally by modification of the MOF to increase such sites, which affords an enhanced lactic acid yield of 79 %, and investigation of the acidity by using in situ FTIR spectroscopy. Density functional theory calculations disclose the cooperative behavior of Lewis acid sites and hydroxy groups in promoting the Cannizzaro reaction, a key step in the production of lactic acid.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Dominio Catalítico , Ácido Láctico , Estructuras Metalorgánicas/química , Xilosa
7.
Dalton Trans ; 50(22): 7736-7743, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33988199

RESUMEN

Four isostructural dinuclear M2L2 mesocates of the general formula [M2(NCS)4(L)2]·4.5MeOH (1M; M = Mn, Fe, Co, Zn) were constructed by using the coordination-driven self-assembly of the [M(NCS)2] precursor and the flexible bis-bidentate pyridylimine Schiff base ligand L (L = 4,4'-(1,4-phenylenebis(oxy))bis(N-(pyridin-2-ylmethylene)aniline). The centrosymmetric M2L2 mesocate forms through the side-by-side coordination of two L ligands to a pair of M(ii) ions. The mesocates exhibit a reversible temperature induced desolvation-solvation behavior without losing their structural integrity. The activated 1Co, as the representative M2L2 mesocate, shows an exceptionally high MeOH vapour uptake capacity of 481.9 cm3 g-1 (68.8 wt%) at STP with good recyclability. Notably, it also exhibits CO2 adsorption with an uptake capacity of 20.2 cm3 g-1 (3.6 wt%) at room temperature and 1 bar.

8.
RSC Adv ; 11(47): 29196-29206, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35479552

RESUMEN

5-Hydroxymethylfurfural (HMF) derived from cellulosic sugars has become increasingly important as a platform chemical for the biorefinery industry because of its versatility in the conversion to other chemicals. Although HMF can be produced in high yield from fructose dehydration, fructose is rather expensive because it requires multiple processing steps. On the other hand, HMF can be produced directly from highly abundant glucose, which could reduce time and cost. However, an effective and multifunctional catalyst is needed to selectively promote the glucose-to-HMF reaction. In this work, we report a bifunctional phosphated titanium dioxide as an efficient catalyst for such a reaction. The best catalyst exhibits excellent catalytic performance for the glucose conversion to HMF with 72% yield and 83% selectivity in the biphasic system. We achieve this by tuning the solvent system, controlling the amount of Brønsted and Lewis acid sites on the catalyst, and modification of the reaction setup. From the analysis of acid sites, we found that the addition of phosphate group (Brønsted acid site) onto the surface of TiO2 (Lewis acid site) significantly enhanced the HMF yield and selectivity when the optimum ratio of Brønsted and Lewis acid sites is reached. The high catalytic activity, good reusability, and simple preparation method of the catalyst show a promise for the potential use of this catalytic system on an industrial scale.

9.
Angew Chem Int Ed Engl ; 60(7): 3417-3421, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33247510

RESUMEN

We present a metal docking strategy utilizing the precise spatial arrangement of organic struts as metal chelating sites in a MOF. Pairs of uncoordinated N atoms on adjacent pyrazole dicarboxylate linkers distributed along the rod-shaped Al-O secondary building units in MOF-303 [Al(OH)(C5 H2 O4 N2 )] were used to chelate CuI and AgI with atomic precision and yield the metalated Cu- and Ag-MOF-303 compounds [(CuCl)0.50 Al(OH)(C5 H2 O4 N2 ) and (AgNO3 )0.49 Al(OH)(C5 H2 O4 N2 )]. The coordination geometries of CuI and AgI were examined using 3D electron diffraction and extended X-ray absorption fine structure spectroscopy techniques. The resulting metalated MOFs showed pore sizes matching the size of Xe, thus allowing for binding of Xe from Xe/Kr mixtures with high capacity and selectivity. In particular, Ag-MOF-303 exhibited Xe uptake of 59 cm3 cm-3 at 298 K and 0.2 bar with a selectivity of 10.4, placing it among the highest performing MOFs.

10.
J Am Chem Soc ; 141(13): 5201-5210, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30852893

RESUMEN

Single-atom catalysts are often considered as the ultimate design principle for supported catalysts, due to their unique geometric and electronic properties and their highly efficient use of precious materials. Here, we report a single-atom catalyst, Cu/UiO-66, prepared by a covalent attachment of Cu atoms to the defect sites at the zirconium oxide clusters of the metal-organic framework (MOF) UiO-66. Kinetic measurements show this catalyst to be highly active and stable under realistic reaction conditions for two important test reactions, the oxidation of CO at temperatures up to 350 °C, which makes this interesting for application in catalytic converters for cars, and for CO removal via selective oxidation of CO in H2-rich feed gases, where it shows an excellent selectivity of about 100% for CO oxidation. Time-resolved operando spectroscopy measurements indicate that the activity of the catalyst is associated with atomically dispersed, positively charged ionic Cu species. Density functional theory (DFT) calculations in combination with experimental data show that Cu binds to the MOF by -OH/-OH2 ligands capping the defect sites at the Zr oxide clusters.

11.
Adv Mater ; 31(12): e1807553, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30687983

RESUMEN

Nanocasting based on porous templates is a powerful strategy in accessing materials and structures that are difficult to form by bottom-up syntheses in a controlled fashion. A facile synthetic strategy for casting ordered, nanoporous platinum (NP-Pt) networks with a high degree of control by using metal-organic frameworks (MOFs) as templates is reported here. The Pt precursor is first infiltrated into zirconium-based MOFs and subsequently transformed to 3D metallic networks via a chemical reduction process. It is demonstrated that the dimensions and topologies of the cast NP-Pt networks can be accurately controlled by using different MOFs as templates. The Brunauer-Emmett-Teller surface areas of the NP-Pt networks are estimated to be >100 m2 g-1 and they exhibit excellent catalytic activities in the methanol electrooxidation reaction (MEOR). This new methodology presents an attractive route to prepare well-defined nanoporous materials for diverse applications ranging from energy to sensing and biotechnology.

12.
J Am Chem Soc ; 140(51): 18208-18216, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30525562

RESUMEN

Particulate methane monooxygenase (pMMO) is an enzyme that oxidizes methane to methanol with high activity and selectivity. Limited success has been achieved in incorporating biologically relevant ligands for the formation of such active site in a synthetic system. Here, we report the design and synthesis of metal-organic framework (MOF) catalysts inspired by pMMO for selective methane oxidation to methanol. By judicious selection of a framework with appropriate topology and chemical functionality, MOF-808 was used to postsynthetically install ligands bearing imidazole units for subsequent metalation with Cu(I) in the presence of dioxygen. The catalysts show high selectivity for methane oxidation to methanol under isothermal conditions at 150 °C. Combined spectroscopies and density functional theory calculations suggest bis(µ-oxo) dicopper species as probable active site of the catalysts.


Asunto(s)
Materiales Biomiméticos/química , Estructuras Metalorgánicas/química , Metano/química , Metanol/síntesis química , Catálisis , Cobre/química , Teoría Funcional de la Densidad , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , Oxígeno/química , Oxigenasas/química
13.
Faraday Discuss ; 201: 9-45, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28820210

RESUMEN

Reticular chemistry, the linking of molecular building units by strong bonds to make crystalline, extended structures such as metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), and covalent organic frameworks (COFs), is currently one of the most rapidly expanding fields of science. In this contribution, we outline the origins of the field; the key intellectual and practical contributions, which have led to this expansion; and the new directions reticular chemistry is taking that are changing the way we think about making new materials and the manner with which we incorporate chemical information within structures to reach additional levels of functionality. This progress is described in the larger context of chemistry and unexplored, yet important, aspects of this field are presented.

14.
Biomaterials ; 123: 172-183, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28182958

RESUMEN

Nanotechnology enables the creation of delivery vehicles able to overcome physiologically imposed barriers, allowing new approaches for reducing the unwanted side effects of systemic delivery of drug, increasing targeting efficiency and so improving therapy efficacy. Owing to the considerable advances in material sciences and pharmaceutics, a broad range of different inorganic or organic drug nanocarriers have been developed. Furthermore, researchers have shown that the combination of inorganic and organic chemistries in one single material, named metal-organic framework (MOF), offers structural designability at the molecular level together with tunable porosity and chemical functionalisability. While the MOF size can be controlled at the nanometer scale, these features are of paramount interest in the development of the next generation of drug delivery systems. After a short state-of-the-art about MOF technology and within the drug delivery context, this paper discusses the benefits of using MOF nanoparticles compared to dendrimers and mesoporous silica nanoparticles in order to understand the challenges that must still be overcome.


Asunto(s)
Dendrímeros/química , Estructuras Metalorgánicas/química , Nanocápsulas/química , Nanocápsulas/ultraestructura , Nanoporos/ultraestructura , Dióxido de Silicio/química , Absorción Fisicoquímica , Difusión , Estructuras Metalorgánicas/ultraestructura , Tamaño de la Partícula , Porosidad
15.
J Am Chem Soc ; 139(1): 356-362, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28004911

RESUMEN

Materials development for artificial photosynthesis, in particular, CO2 reduction, has been under extensive efforts, ranging from inorganic semiconductors to molecular complexes. In this report, we demonstrate a metal-organic framework (MOF)-coated nanoparticle photocatalyst with enhanced CO2 reduction activity and stability, which stems from having two different functional units for activity enhancement and catalytic stability combined together as a single construct. Covalently attaching a CO2-to-CO conversion photocatalyst ReI(CO)3(BPYDC)Cl, BPYDC = 2,2'-bipyridine-5,5'-dicarboxylate, to a zirconium MOF, UiO-67 (Ren-MOF), prevents dimerization leading to deactivation. By systematically controlling its density in the framework (n = 0, 1, 2, 3, 5, 11, 16, and 24 complexes per unit cell), the highest photocatalytic activity was found for Re3-MOF. Structural analysis of Ren-MOFs suggests that a fine balance of proximity between photoactive centers is needed for cooperatively enhanced photocatalytic activity, where an optimum number of Re complexes per unit cell should reach the highest activity. Based on the structure-activity correlation of Ren-MOFs, Re3-MOF was coated onto Ag nanocubes (Ag⊂Re3-MOF), which spatially confined photoactive Re centers to the intensified near-surface electric fields at the surface of Ag nanocubes, resulting in a 7-fold enhancement of CO2-to-CO conversion under visible light with long-term stability maintained up to 48 h.

16.
Nano Lett ; 16(12): 7645-7649, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960445

RESUMEN

We show that the activity and selectivity of Cu catalyst can be promoted by a Zr-based metal-organic framework (MOF), Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), UiO-66, to have a strong interaction with Zr oxide [Zr6O4(OH)4(-CO2)12] secondary building units (SBUs) of the MOF for CO2 hydrogenation to methanol. These interesting features are achieved by a catalyst composed of 18 nm single Cu nanocrystal (NC) encapsulated within single crystal UiO-66 (Cu⊂UiO-66). The performance of this catalyst construct exceeds the benchmark Cu/ZnO/Al2O3 catalyst and gives a steady 8-fold enhanced yield and 100% selectivity for methanol. The X-ray photoelectron spectroscopy data obtained on the surface of the catalyst show that Zr 3d binding energy is shifted toward lower oxidation state in the presence of Cu NC, suggesting that there is a strong interaction between Cu NC and Zr oxide SBUs of the MOF to make a highly active Cu catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA