Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mutagenesis ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39441622

RESUMEN

Colorectal cancer is a global killer that causes approximately 940 thousand deaths annually. Terminalia ivorensis (TI) is a tropical tree, the bark of which is used in African traditional medicine for the treatment of diabetes, malaria and ulcer. This study investigated TI as a potential anticancer agent in human colon cells in vitro. TI was extracted sequentially with petroleum ether, chloroform, ethyl acetate and ethanol. Antioxidant activity was assessed by DPPH and FRAP, and differential effects on cell viability, growth, DNA damage, DNA repair, and migration were measured in human colon cancer cells (CaCo-2) and/or non-cancerous human colonocytes (NCM460). The TI phytochemicals most strongly associated with these effects were identified by partial least-squares discriminant analysis. DPPH and FRAP activity were highest in TI ethyl acetate and ethanol extracts (p=0.001). All TI extracts significantly inhibited cell viability and growth and induced DNA damage and inhibited DNA repair in both cell models. The majority of TI extracts were significantly (p=0.01) more toxic to cancer cells than non-cancerous colonocytes. DNA repair was significantly (p=0.001) inhibited in CaCo-2 cells by ethyl acetate extract compared with NCM460 cells. Migration was also significantly inhibited (p<0.001) in CaCo-2 by ethyl acetate (80%) and ethanol extracts (75%). Specific benzoic acids, flavonoids and phenols were identified to be strongly associated with these effects. TI displayed strong antioxidant activity and specific anticancer effects by inducing cell death and DNA damage, and by inhibiting DNA repair, cell proliferation and migration.

2.
Nutrients ; 16(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125398

RESUMEN

Persimmon fruit processing-derived waste and by-products, such as peels and pomace, are important sources of dietary fiber and phytochemicals. Revalorizing these by-products could help promote circular nutrition and agricultural sustainability while tackling dietary deficiencies and chronic diseases. In this study, fiber-rich fractions were prepared from the by-products of Sharoni and Brilliant Red persimmon varieties. These fractions were quantified for their phenolic composition and assessed for their ability to promote the growth of beneficial human colonic Firmicutes species and for their in vitro anti-inflammatory potential. Gallic and protocatechuic acids, delphinidin, and cyanidin were the main phenolics identified. Faecalibacterium prausnitzii strains showed significantly higher growth rates in the presence of the Brilliant Red fraction, generating more than double butyrate as a proportion of the total short-chain fatty acids (39.5% vs. 17.8%) when compared to glucose. The fiber-rich fractions significantly decreased the inflammatory effect of interleukin-1ß in Caco-2 cells, and the fermented fractions (both from Sharoni and Brilliant Red) significantly decreased the inflammatory effect of interleukin-6 and tumor necrosis factor-α in the RAW 264.7 cells. Therefore, fiber-rich fractions from persimmon by-products could be part of nutritional therapies as they reduce systemic inflammation, promote the growth of beneficial human gut bacteria, and increase the production of beneficial microbial metabolites such as butyrate.


Asunto(s)
Antiinflamatorios , Colon , Fibras de la Dieta , Diospyros , Humanos , Fibras de la Dieta/farmacología , Fibras de la Dieta/análisis , Diospyros/química , Ratones , Antiinflamatorios/farmacología , Colon/microbiología , Colon/efectos de los fármacos , Colon/metabolismo , Animales , Células RAW 264.7 , Células CACO-2 , Microbioma Gastrointestinal/efectos de los fármacos , Firmicutes , Faecalibacterium prausnitzii , Frutas/química , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Hidroxibenzoatos/farmacología , Hidroxibenzoatos/análisis , Fenoles/farmacología , Fenoles/análisis , Fermentación , Ácido Gálico/farmacología , Antocianinas/farmacología , Antocianinas/análisis
3.
PLoS One ; 19(2): e0290052, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422016

RESUMEN

Many commensal gut microbes are recognized for their potential to synthesize vitamin B12, offering a promising avenue to address deficiencies through probiotic supplementation. While bioinformatics tools aid in predicting B12 biosynthetic potential, empirical validation remains crucial to confirm production, identify cobalamin vitamers, and establish biosynthetic yields. This study investigates vitamin B12 production in three human colonic bacterial species: Anaerobutyricum hallii DSM 3353, Roseburia faecis DSM 16840, and Anaerostipes caccae DSM 14662, along with Propionibacterium freudenreichii DSM 4902 as a positive control. These strains were selected for their potential use as probiotics, based on speculated B12 production from prior bioinformatic analyses. Cultures were grown in M2GSC, chemically defined media (CDM), and Gorse extract medium (GEM). The composition of GEM was similar to CDM, except that the carbon and nitrogen sources were replaced with the protein-depleted liquid waste obtained after subjecting Gorse to a leaf protein extraction process. B12 yields were quantified using liquid chromatography with tandem mass spectrometry. The results suggested that the three butyrate-producing strains could indeed produce B12, although the yields were notably low and were detected only in the cell lysates. Furthermore, B12 production was higher in GEM compared to M2GSC medium. The positive control, P. freudenreichii DSM 4902 produced B12 at concentrations ranging from 7 ng mL-1 to 12 ng mL-1. Univariate-scaled Principal Component Analysis (PCA) of data from previous publications investigating B12 production in P. freudenreichii revealed that B12 yields diminished when the carbon source concentration was ≤30 g L-1. In conclusion, the protein-depleted wastes from the leaf protein extraction process from Gorse can be valorised as a viable substrate for culturing B12-producing colonic gut microbes. Furthermore, this is the first report attesting to the ability of A. hallii, R. faecis, and A. caccae to produce B12. However, these microbes seem unsuitable for industrial applications owing to low B12 yields.


Asunto(s)
Microbioma Gastrointestinal , Ulex , Humanos , Vitamina B 12 , Bencimidazoles , Carbono , Suplementos Dietéticos
4.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003497

RESUMEN

Pseudo-cereals such as buckwheat (Fagopyrum esculentum) are valid candidates to promote diet biodiversity and nutrition security in an era of global climate change. Buckwheat hulls (BHs) are currently an unexplored source of dietary fibre and bioactive phytochemicals. This study assessed the effects of several bioprocessing treatments (using enzymes, yeast, and combinations of both) on BHs' nutrient and phytochemical content, their digestion and metabolism in vitro (using a gastrointestinal digestion model and mixed microbiota from human faeces). The metabolites were measured using targeted LC-MS/MS and GC analysis and 16S rRNA gene sequencing was used to detect the impact on microbiota composition. BHs are rich in insoluble fibre (31.09 ± 0.22% as non-starch polysaccharides), protocatechuic acid (390.71 ± 31.72 mg/kg), and syringaresinol (125.60 ± 6.76 mg/kg). The bioprocessing treatments significantly increased the extractability of gallic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid, vanillin, syringaldehyde, p-coumaric acid, ferulic acid, caffeic acid, and syringaresinol in the alkaline-labile bound form, suggesting the bioaccessibility of these phytochemicals to the colon. Furthermore, one of the treatments, EC_2 treatment, increased significantly the in vitro upper gastrointestinal release of bioactive phytochemicals, especially for protocatechuic acid (p < 0.01). The BH fibre was fermentable, promoting the formation mainly of propionate and, to a lesser extent, butyrate formation. The EM_1 and EC_2 treatments effectively increased the content of insoluble fibre but had no effect on dietary fibre fermentation (p > 0.05). These findings promote the use of buckwheat hulls as a source of dietary fibre and phytochemicals to help meet dietary recommendations and needs.


Asunto(s)
Fagopyrum , Humanos , Fagopyrum/metabolismo , Cromatografía Liquida , ARN Ribosómico 16S/metabolismo , Espectrometría de Masas en Tándem , Fibras de la Dieta/metabolismo , Fitoquímicos/metabolismo
5.
PLoS One ; 18(10): e0292886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824555

RESUMEN

Native ponies are at increased risk of obesity and metabolic perturbations, such as insulin dysregulation (ID), a key risk factor for endocrinopathic laminitis. Management and feeding practices can be adapted to maintain healthy body condition and support metabolic health, but owners may inadvertently provide their ponies with inappropriate management leading to obesity and exacerbating risk of metabolic disease. Adoption of preventative weight management approaches (WMAs), including regular monitoring of body condition, providing appropriate preserved forage, promoting seasonal weight loss, and using exercise accordingly, are key in supporting native ponies' metabolic health. The factors influencing the adoption of WMAs, such as owners' experience and confidence, require exploration. The aim of the current study was to understand factors influencing owners' likelihood to undertake certain WMAs, to develop our understanding of suitable intervention targets. A total of 571 responses to an online cross-sectional questionnaire were analysed. Mediation analysis revealed that whilst long term (≥20 years) experience caring for native ponies was associated with owners increased, self-reported confidence in identifying disease and managing their native ponies, this did not translate to an increased likelihood of implementing WMAs. Conversely, respondents who managed ponies with dietary requirements related to obesity, laminitis, or equine metabolic syndrome were more likely to use WMAs related to feeding, seasonal weight management and exercise. Owner confidence was assessed and rejected as a mediator of the relationship between experience and WMA use. These results highlight the need for further work that elucidates the pathways leading owners to undertake action against obesity without the need for ponies to develop overt disease, as well as suggesting a need for long term managers of native ponies to update management practices with preventative care as the focus.


Asunto(s)
Dermatitis , Enfermedades de los Caballos , Síndrome Metabólico , Humanos , Caballos , Animales , Estudios Transversales , Enfermedades de los Caballos/prevención & control , Enfermedades de los Caballos/etiología , Factores de Riesgo , Obesidad/prevención & control , Obesidad/complicaciones , Síndrome Metabólico/complicaciones
6.
Animals (Basel) ; 13(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37835713

RESUMEN

The equine faecal microbiota is often assessed as a proxy of the microbial community in the distal colon, where the microbiome has been linked to states of health and disease in the horse. However, the microbial community structure may change over time if samples are not adequately preserved. This study stored equine faecal samples from n = 10 horses in four preservation treatments at room temperature for up to 150 h and assessed the resulting impact on microbial diversity and the differential abundance of taxa. Treatments included "COLD" (samples packaged with a cool pack), "CLX" (2% chlorhexidine digluconate solution), "NAP" (nucleic acid preservation buffer), and "FTA" (Whatman FTA™ cards). The samples were assessed using 16S rRNA gene sequencing after storage for 0, 24, 72, and 150 h at room temperature under the different treatments. The results showed effective preservation of diversity and community structure with NAP buffer but lower diversity (p = 0.001) and the under-representation of Fibrobacterota in the FTA card samples. The NAP treatment inhibited the overgrowth of bloom taxa that occurred by 72 h at room temperature. The COLD, CLX, and NAP treatments were effective in preserving the faecal microbiota for up to 24 h at room temperature, and the CLX and NAP treatments improved the yield of Patescibacteria and Fibrobacterota in some cases. The cold and CLX treatments were ineffective in preventing community shifts that occurred by 72 h at room temperature. These findings demonstrate the suitability of the COLD, NAP, and CLX treatments for the room temperature storage of equine faeces for up to 24 h and of NAP buffer for up to 150 h prior to processing.

7.
Front Nutr ; 10: 1139880, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351191

RESUMEN

Background: Type 2 Diabetes Mellitus (T2DM) is a major risk factor for the development of cardiometabolic diseases. T2DM prevention is largely based on weight-loss and whole diet changes, but intervention with dietary plant bioactives may also improve metabolic health. Objective: To assess whether supplementation with bilberry and grape seed extract for 12 weeks improves cardiometabolic outcomes in individuals at risk of developing T2DM, and to determine whether individual treatment response is associated with differences in gut microbiota composition and levels of phenolic metabolites in blood and feces. Methods: In the randomized, double-blind, placebo-controlled, cross-over PRECISE intervention study, 14 participants, aged ≥45 years, with a BMI >28 kg/m2, and having an increased risk of T2DM, received a supplement containing 250 mg of bilberry plus 300 mg of grape seed extract, or 550 mg of a control extract, per day, for 12 weeks each. Blood samples were obtained for the assessment of HbA1c, fasting glucose, oral glucose tolerance tests, insulin, glucagon levels, total, LDL and HDL cholesterol, and phenolic acids. We also assessed advanced glycation end products in the skin, ambulatory 24 hours blood pressure, 7-day dietary intake by weighed food diaries, fecal levels of phenolic metabolites using LC-MS/MS and gut microbiota composition using 16S rRNA gene sequencing analysis. Results: The combined bilberry and grape seed extract did not affect glucose and cholesterol outcomes, but it decreased systolic and diastolic ambulatory blood pressure by 4.7 (p < 0.001) and 2.3 (p = 0.0009) mmHg, respectively. Eight out of fourteen participants were identified as blood pressure 'responders'. These responders had higher levels of phenylpropionic and phenyllactic acids in their fecal samples, and a higher proportional abundance of Fusicatenibacter-related bacteria (p < 0.01) in their baseline stool samples. Conclusion: Long-term supplementation with bilberry and grape seed extract can improve systolic and diastolic blood pressure in individuals at risk of T2DM. Individual responsiveness was correlated with the presence of certain fecal bacterial strains, and an ability to metabolize (epi)catechin into smaller phenolic metabolites.Clinical trial registry number: Research Registry (number 4084).

8.
BMC Plant Biol ; 23(1): 162, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36964494

RESUMEN

BACKGROUND: Terminalia ivorensis (TI) is used in West African ethnomedicine for the treatment of conditions including ulcers, malaria and wounds. Despite its widespread use, the phytochemical profile of TI remains largely undetermined. This research investigated the effects of extraction method, season, and storage conditions on the phytochemical composition of TI to contribute towards understanding the potential benefits. METHODS: TI bark was collected in September 2014, September 2018 and February 2018 during the rainy or dry seasons in Eastern Region, Ghana. Samples were extracted sequentially with organic solvents (petroleum ether, chloroform, ethyl acetate and ethanol) or using water (traditional). Metabolites were identified by liquid chromatography-mass spectrometry/mass spectrometry and compared statistically by ANOVA. RESULTS: A total of 82 different phytochemicals were identified across all samples. A greater yield of the major phytochemicals (44%, p < 0.05) was obtained by water as compared with organic extraction. There was also a higher concentration of metabolites present in cold (63%, p < 0.05) compared with hot water extraction. A significantly (p < 0.05) higher number of phytochemicals were identified from TI collected in the dry (85%) compared to the rainy season (69%). TI bark stored for four years retained 84% of the major phytochemicals. CONCLUSION: This work provides important information on composition and how this is modified by growing conditions, storage and method of extraction informing progress on the development of TI as a prophylactic formulation or medicine.


Asunto(s)
Extractos Vegetales , Terminalia , Extractos Vegetales/química , Terminalia/química , Estaciones del Año , Fitoquímicos/análisis , Solventes/química , Agua
9.
Environ Microbiol ; 25(8): 1484-1504, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36912501

RESUMEN

Dietary fibre is a major energy source for the human gut microbiota, but it is unclear to what extent the fibre source and complexity affect microbial growth and metabolite production. Cell wall material and pectin were extracted from five different dicotyledon plant sources, apples, beet leaves, beetroots, carrots and kale, and compositional analysis revealed differences in the monosaccharide composition. Human faecal batch incubations were conducted with 14 different substrates, including the plant extracts, wheat bran and commercially available carbohydrates. Microbial activity was determined for up to 72 h by measuring gas and fermentation acid production, total bacteria (by qPCR) and microbial community composition by 16S rRNA amplicon sequencing. The more complex substrates gave rise to more microbiota variation compared with the pectins. The comparison of different plant organs showed that the leaves (beet leaf and kale) and roots (carrot and beetroot) did not give rise to similar bacterial communities. Rather, the compositional features of the plants, such as high arabinan levels in beet and high galactan levels in carrot, appear to be major predictors of bacterial enrichment on the substrates. Thus, in-depth knowledge on dietary fibre composition should aid the design of diets focused on optimizing the microbiota.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Fibras de la Dieta/metabolismo , Bacterias , Heces/microbiología , Fermentación , Pectinas/metabolismo
10.
Br J Nutr ; 130(9): 1521-1536, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36847278

RESUMEN

Only 6 to 8 % of the UK adults meet the daily recommendation for dietary fibre. Fava bean processing lead to vast amounts of high-fibre by-products such as hulls. Bean hull fortified bread was formulated to increase and diversify dietary fibre while reducing waste. This study assessed the bean hull: suitability as a source of dietary fibre; the systemic and microbial metabolism of its components and postprandial events following bean hull bread rolls. Nine healthy participants (53·9 ± 16·7 years) were recruited for a randomised controlled crossover study attending two 3 days intervention sessions, involving the consumption of two bread rolls per day (control or bean hull rolls). Blood and faecal samples were collected before and after each session and analysed for systemic and microbial metabolites of bread roll components using targeted LC-MS/MS and GC analysis. Satiety, gut hormones, glucose, insulin and gastric emptying biomarkers were also measured. Two bean hull rolls provided over 85 % of the daily recommendation for dietary fibre; but despite being a rich source of plant metabolites (P = 0·04 v. control bread), these had poor systemic bioavailability. Consumption of bean hull rolls for 3 days significantly increased plasma concentration of indole-3-propionic acid (P = 0·009) and decreased faecal concentration of putrescine (P = 0·035) and deoxycholic acid (P = 0·046). However, it had no effect on postprandial plasma gut hormones, bacterial composition and faecal short chain fatty acids amount. Therefore, bean hulls require further processing to improve their bioactives systemic availability and fibre fermentation.


Asunto(s)
Fabaceae , Hormonas Gastrointestinales , Adulto , Humanos , Voluntarios Sanos , Putrescina , Pan/análisis , Cromatografía Liquida , Estudios Cruzados , Espectrometría de Masas en Tándem , Fibras de la Dieta/análisis , Fabaceae/metabolismo , Ácido Desoxicólico , Glucemia/análisis
11.
Biomedicines ; 10(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36009361

RESUMEN

Opioid-induced dysbiosis (OID) is a specific condition describing the consequences of opioid use on the bacterial composition of the gut. Opioids have been shown to affect the epithelial barrier in the gut and modulate inflammatory pathways, possibly mediating opioid tolerance or opioid-induced hyperalgesia; in combination, these allow the invasion and proliferation of non-native bacterial colonies. There is also evidence that the gut-brain axis is linked to the emotional and cognitive aspects of the brain with intestinal function, which can be a factor that affects mental health. For example, Mycobacterium, Escherichia coli and Clostridium difficile are linked to Irritable Bowel Disease; Lactobacillaceae and Enterococcacae have associations with Parkinson's disease, and Alistipes has increased prevalence in depression. However, changes to the gut microbiome can be therapeutically influenced with treatments such as faecal microbiota transplantation, targeted antibiotic therapy and probiotics. There is also evidence of emerging therapies to combat OID. This review has collated evidence that shows that there are correlations between OID and depression, Parkinson's Disease, infection, and more. Specifically, in pain management, targeting OID deserves specific investigations.

12.
Eur J Nutr ; 61(2): 1057-1072, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34716790

RESUMEN

PURPOSE: This study evaluated the postprandial effects following consumption of buckwheat, fava bean, pea, hemp and lupin compared to meat (beef); focussing on biomarkers of satiety, gut hormones, aminoacids and plant metabolites bioavailability and metabolism. METHODS: Ten subjects (n = 3 men; n = 7 women; 42 ± 11.8 years of age; BMI 26 ± 5.8 kg/m2) participated in six 1-day independent acute interventions, each meal containing 30 g of protein from buckwheat, fava bean, pea, hemp, lupin and meat (beef). Blood samples were collected during 24-h and VAS questionnaires over 5-h. RESULTS: Volunteers consumed significantly higher amounts of most amino acids from the meat meal, and with few exceptions, postprandial composition of plasma amino acids was not significantly different after consuming the plant-based meals. Buckwheat meal was the most satious (300 min hunger scores, p < 0.05).Significant increase in GLP-1 plasma (AUC, iAUC p = 0.01) found after hemp compared with the other plant-based meals. Decreased plasma ghrelin concentrations (iAUC p < 0.05) found on plant (hemp) vs. meat meal. Several plasma metabolites after hemp meal consumption were associated with hormone trends (partial least squares-discriminant analysis (PLS-DA): 4-hydroxyphenylpyruvic acid, indole 3-pyruvic acid, 5-hydoxytryptophan, genistein and biochanin A with GLP-1, PYY and insulin; 3-hydroxymandelic acid and luteolidin with GLP-1 and ghrelin and 4-hydroxymandelic acid, benzoic acid and secoisolariciresinol with insulin and ghrelin. Plasma branched-chain amino acids (BCAAs), (iAUC, p < 0.001); and phenylalanine and tyrosine (iAUC, p < 0.05) were lower after buckwheat comparison with meat meal. CONCLUSION: Plants are valuable sources of amino acids which are promoting satiety. The impact of hemp and buckwheat on GLP-1 and, respectively, BCAAs should be explored further as could be relevant for aid and prevention of chronic diseases such as type 2 diabetes. Study registered with clinicaltrial.gov on 12th July 2013, study ID number: NCT01898351.


Asunto(s)
Cannabis , Diabetes Mellitus Tipo 2 , Fagopyrum , Hormonas Gastrointestinales , Aminoácidos , Glucemia/metabolismo , Cannabis/metabolismo , Estudios Cruzados , Fagopyrum/metabolismo , Femenino , Ghrelina , Voluntarios Sanos , Humanos , Insulina , Masculino , Comidas , Periodo Posprandial
13.
Proc Nutr Soc ; 80(2): 173-185, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33349284

RESUMEN

The composition and metabolic activity of the bacteria that inhabit the large intestine can have a major impact on health. Despite considerable inter-individual variation across bacterial species, the dominant phyla are generally highly conserved. There are several exogenous and gut environmental factors that play a role in modulating the composition and activities of colonic bacteria including diet with intakes of different macronutrients, including protein, accounting for approximately 20% of the microbial variation. Certain bacterial species tend to be considered as generalists and can metabolise a broad range of substrates, including both carbohydrate- and protein-derived substrates, whilst other species are specialists with a rather limited metabolic capacity. Metabolism of peptides and amino acids by gut bacteria can result in the formation of a wide range of metabolites several of which are considered deleterious to health including nitrosamines, heterocyclic amines and hydrogen sulphide as some of these products are genotoxic and have been linked to colonic disease. Beneficial metabolites however include SCFA and certain species can use amino acids to form butyrate which is the major energy source for colonocytes. The impact on health may however depend on the source of these products. In this review, we consider the impact of diet, particularly protein diets, on modulating the composition of the gut microbiota and likely health consequences and the potential impact of climate change and food security.


Asunto(s)
Microbioma Gastrointestinal , Bacterias , Butiratos , Colon , Dieta , Humanos
14.
J Food Biochem ; 45(2): e13592, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33349958

RESUMEN

With increased longevity and subsequent rise in people with age-related neurodegenerative diseases, protection of neurons from oxidative stress damage has become an important field of study. For the first time, we highlight the neuroprotective properties of rapeseed pomace (RSP) extract in SH-SY5Y human neuroblastoma cells. We used resazurin to determine cell metabolism, 2,7'-dichlorofluorescin diacetate (H2 DCFDA) to assess the potential of RSP extracts to shield cells from reactive oxygen species (ROS) induced by H2 O2 using flow cytometry, HPLC to analyze for malondialdehyde (MDA) as a lipid peroxidation marker and the COMET assay to assess DNA strand breakage. Protein stress arrays were used to investigate the cellular pathways affected by RSP extract. No effect on cell metabolism in SH-SY5Y cells was observed after RSP extract treatment (up to 1.5 mg/ml). Pretreatment (24 hr) with RSP extract (1 mg/ml), before H2 O2 -induced stress, alleviated ROS production and DNA strand breakage by 68%, and 38%, respectively. At protein level, the RSP extract increased the levels of FABP-1, HIF-1α, SOD2, and Cytochrome c proteins. Under H2 O2 -induced stress, however, it helped to downregulate p38α levels, a protein kinase which is receptive to stress impulse (mitogen-activated). RSP extract shows very promising cell protective properties in relation to oxidative stress. PRACTICAL APPLICATIONS: Oxidative stress has been associated with numerous diseases for example cancer, diabetes, and many neurological disorders including Parkinson's and Alzheimer's diseases. Hence, there is acceptance among the scientific community of antioxidant therapy and the quest for effective, low cost and readily available sources of natural antioxidants is paramount. Rapeseed plantations are abundant around the world due to the use of rapeseed oil in cooking and as a biofuel. The resulting rapeseed pomace (by-product), specifically its extract, contains high levels of phytochemicals that protect cells against oxidative stress. Therefore, RSP extract can potentially be used/developed as functional food and nutraceuticals in the prevention of many complex neurodegenerative diseases.


Asunto(s)
Brassica napus , Antioxidantes/farmacología , Daño del ADN , Humanos , Estrés Oxidativo , Extractos Vegetales/farmacología
15.
Nutrients ; 12(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751677

RESUMEN

The potential beneficial effects of plant-based diets on human health have been extensively studied. However, the evidence regarding the health effects of extracted plant-based proteins as functional ingredients, other than soya, is scarce. The aim of this review was to compile evidence on the effects of extracted protein from a wide range of traditional and novel plant sources on glycemic responses, appetite, body weight, metabolic, cardiovascular and muscle health. A comprehensive search of PubMed, EMBASE and The Cochrane Central Register of Controlled Trials (CENTRAL) was conducted through 23 and 27 March 2020 for randomized controlled trials that featured any of the following 18 plant protein sources: alfalfa, duckweed, buckwheat, chickpea, fava bean, hemp, lentil, lupin, mushroom, oat, pea, potato, pumpkin, quinoa, rapeseed, rice, sacha inchi, sunflower. Only interventions that investigated concentrated, isolated or hydrolysed forms of dietary protein were included. Searched health outcome measures were: change in blood glucose, insulin, satiety hormones concentration, subjective assessment of appetite/satiety, change in blood lipids concentration, blood pressure, body weight and muscle health parameters. Acute and sub-chronic studies were considered for inclusion. Applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach we identified 1190 records. Twenty-six studies met the inclusion criteria. Plant protein sources used in interventions were most often pea (n = 16), followed by lupin (n = 4), fava bean (n = 2), rice (n = 2), oat (n = 2), hemp (n = 2) and lentil (n = 1). Satiety and postprandial glycemic response were the most frequently reported health outcomes (n = 18), followed by blood lipids (n = 6), muscle health (n = 5), body weight (n = 5) and blood pressure (n = 4). No studies on the remaining plant proteins in the extracted form were identified through the search. Most studies confirmed the health-promoting effect of identified extracted plant protein sources across glycemic, appetite, cardiovascular and muscular outcomes when compared to baseline or non-protein control. However, the current evidence is still not sufficient to formulate explicit dietary recommendations. In general, the effects of plant protein were comparable (but not superior) to protein originating from animals. This is still a promising finding, suggesting that the desired health effects can be achieved with more sustainable, plant alternatives. More methodologically homogenous research is needed to formulate and validate evidence-based health claims for plant protein ingredients. The relevance of these findings are discussed for the food sector with supporting market trends.


Asunto(s)
Dieta Saludable/métodos , Ingredientes Alimentarios/análisis , Alimentos Funcionales/análisis , Proteínas de Vegetales Comestibles/farmacología , Adulto , Apetito/efectos de los fármacos , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Femenino , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Periodo Posprandial/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Saciedad/efectos de los fármacos , Adulto Joven
16.
Biochem Pharmacol ; 178: 114109, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32569626

RESUMEN

Protein-tyrosine phosphatase 1B (PTP1B, EC 3.1.3.48) is an important regulator of insulin signalling. Herein, we employed experimental and computational biology techniques to investigate the inhibitory properties of phenolics, identified from four in vitro gastrointestinal digested (IVGD) soft fruits, on PTP1B. Analysis by LC-MS/MS identified specific phenolics that inhibited PTP1B in vitro. Enzyme kinetics identified the mode of inhibition, while dynamics, stability and binding mechanisms of PTP1B-ligand complex were investigated through molecular modelling, docking, molecular dynamics (MD) simulations, and MM/PBSA binding free energy estimation. IVGD extracts and specific phenolics identified from the four soft fruits inhibited PTP1B (P < 0.0001) activity. Among the phenolics tested, the greatest inhibition was shown by malvidin-3-glucoside (P < 0.0001) and gallic acid (P < 0.0001). Malvidin-3-glucoside (Ki = 3.8 µg/mL) was a competitive inhibitor and gallic acid (Ki = 33.3 µg/mL) a non-competitive inhibitor of PTP1B. Malvidin-3-glucoside exhibited better binding energy than gallic acid and the synthetic inhibitor Dephostatin (-7.38 > -6.37 > -5.62 kcal/mol) respectively. Principal component analysis demonstrated malvidin-3-glucoside PTP1B-complex occupies more conformational space where critical WPD-loop displayed a higher degree of motion. MM/PBSA binding free energy for malvidin-3-glucoside to PTP1B was found to be higher than other complexes mediated by Van der Waals energy rather than electrostatic interaction for the other two inhibitors (-80.32 ± 1.25 > -40.64 ± 1.43 > -21.63 ± 1.73 kcal/mol) respectively. Altogether, we have established novel insights into the specific binding of dietary phenolics and have identified malvidin-3-glucoside as an PTP1B inhibitor, which may be further industrially developed for the treatment of type-2 diabetes.


Asunto(s)
Antocianinas/química , Glucósidos/química , Polifenoles/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Ribes/química , Vaccinium myrtillus/química , Antocianinas/aislamiento & purificación , Sitios de Unión , Frutas/química , Ácido Gálico/química , Ácido Gálico/aislamiento & purificación , Glucósidos/aislamiento & purificación , Humanos , Hidroquinonas/química , Cinética , Simulación de Dinámica Molecular , Extractos Vegetales/química , Polifenoles/aislamiento & purificación , Análisis de Componente Principal , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Especificidad por Sustrato , Termodinámica
17.
Foods ; 9(4)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260066

RESUMEN

Legumes are a source of health-promoting macro- and micronutrients, but also contain numerous phytochemicals with useful biological activities, an example of which are saponins. Epidemiological studies suggest that saponins may play a role in protection from cancer and benefit human health by lowering cholesterol. Therefore, they could represent good candidates for specialised functional foods. Following the consumption of a soya-rich high-protein weight-loss diet (SOYA HP WL), the concentrations of Soyasaponin I (SSI) and soyasapogenol B (SSB) were determined in faecal samples from human volunteers (n = 10) and found to be between 1.4 and 17.5 mg per 100 g fresh faecal sample. SSB was the major metabolite identified in volunteers' plasma (n = 10) after consumption of the soya test meal (SOYA MEAL); the postprandial (3 h after meal) plasma concentration for SSB varied between 48.5 ng/mL to 103.2 ng/mL. The metabolism of SSI by the gut microbiota (in vitro) was also confirmed. This study shows that the main systemic metabolites of soyasaponin are absorbed from the gut and that they are bioavailable in plasma predominantly as conjugates of sapogenol. The metabolism and bioavailability of biologically active molecules represent key information necessary for the efficient development of functional foods.

18.
J Nutr Biochem ; 78: 108325, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31952012

RESUMEN

The hypoglycaemic effects of two Ribes sp. i.e., anthocyanin-rich black currants (BC) were compared to green currants (GC), which are low in anthocyanins to establish which compounds are involved in the regulation of postprandial glycaemia. We determined the effect of the currants on inhibiting carbohydrate digestive enzymes (α-amylase, α-glucosidase), intestinal sugar absorption and transport across CaCo-2 cells. The digestion of these currants was modelled using in vitro gastrointestinal digestion (IVGD) to identify the metabolites present in the digested extracts by LC-MS/MS. Freeze-dried BC and IVDG extracts inhibited yeast α-glucosidase activity (P<.0001) at lower concentrations than acarbose, whereas GC and IVDG GC at the same concentrations showed no inhibition. BC and GC both showed significant inhibitory effects on salivary α-amylase (P<.0001), glucose uptake (P<.0001) and the mRNA expression of sugar transporters (P<.0001). Taken together this suggests that the anthocyanins which are high in BC have their greatest effect on postprandial hyperglycaemia by inhibiting α-glucosidase activity. Phytochemical analysis identified the phenolics in the currants and confirmed that freeze-dried BC contained higher concentrations of anthocyanins compared to GC (39.80 vs. 9.85 g/kg dry weight). Specific phenolics were also shown to inhibit salivary α-amylase, α-glucosidase, and glucose uptake. However, specific anthocyanins identified in BC which were low in GC were shown to inhibit α-glucosidase. In conclusion the anthocyanins in BC appear to regulate postprandial hyperglycaemia primarily but not solely by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters which together could lower the associated risk of developing type-2 diabetes.


Asunto(s)
Antocianinas/química , Glucosa/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Hiperglucemia/metabolismo , Ribes/química , alfa-Amilasas Salivales/metabolismo , Glucemia/análisis , Células CACO-2 , Supervivencia Celular , Cromatografía Liquida , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Frutas/química , Tracto Gastrointestinal/metabolismo , Humanos , Fenol/química , Fenol/metabolismo , Fenoles/química , Periodo Posprandial , Azúcares/química , Espectrometría de Masas en Tándem , alfa-Glucosidasas/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-31421742

RESUMEN

Intake of folate (vitamin B9) is strongly inversely linked with human cancer risk, particularly colon cancer. In general, people with the highest dietary intake of folate or with high blood folate levels are at a reduced risk (approx. 25%) of developing colon cancer. Folate acts in normal cellular metabolism to maintain genomic stability through the provision of nucleotides for DNA replication and DNA repair and by regulating DNA methylation and gene expression. Folate deficiency can accelerate carcinogenesis by inducing misincorporation of uracil into DNA, by increasing DNA strand breakage, by inhibiting DNA base excision repair capacity and by inducing DNA hypomethylation and consequently aberrant gene and protein expression. Conversely, increasing folate intake may improve genomic stability. This review describes key applications of single cell gel electrophoresis (the comet assay) in assessing genomic instability (misincorporated uracil, DNA single strand breakage and DNA repair capacity) in response to folate status (deficient or supplemented) in human cells in vitro, in rodent models and in human case-control and intervention studies. It highlights an adaptation of the SCGE comet assay for measuring genome-wide and gene-specific DNA methylation in human cells and colon tissue.


Asunto(s)
Monitoreo Biológico/métodos , Neoplasias del Colon/genética , Ensayo Cometa/métodos , Ácido Fólico/farmacología , Inestabilidad Genómica , Análisis de la Célula Individual/métodos , Línea Celular , Neoplasias del Colon/epidemiología , Neoplasias del Colon/prevención & control , Roturas del ADN , Metilación de ADN , Reparación del ADN , Replicación del ADN , Ácido Fólico/sangre , Deficiencia de Ácido Fólico/sangre , Deficiencia de Ácido Fólico/genética , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Genotipo , Homocistinuria/sangre , Homocistinuria/genética , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/sangre , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/fisiología , Espasticidad Muscular/sangre , Espasticidad Muscular/genética , Trastornos Psicóticos/sangre , Trastornos Psicóticos/genética , Riesgo , Uracilo/metabolismo
20.
Food Chem ; 290: 56-63, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31000056

RESUMEN

Using simple solvent extraction and enzymatic hydrolysis, a rapid LC-MS/MS method for quantification of free and conjugated forms of anthocyanidins and anthocyanins in plasma and urine samples was developed and validated. A mixed enzymatic treatment containing ß-glucuronidase (100 U mL-1) and sulfatase (2.5 U mL-1) for 5 min (37 °C; pH 6) was optimal condition for deconjugation of anthocyanidins and anthocyanins in urine and plasma samples. The LC-MS/MS allowed quantifying thirteen different anthocyanidins and anthocyanins simultaneously. The developed LC-MS/MS method was precise and accurate over multiple days and nominal concentrations. The stability assessment study confirmed that the long-term storage and/or periodic use of plasma and urine samples might have a considerable impact on the stability of some anthocyanidins. The method was successfully applied to measure anthocyanidins and anthocyanins in plasma and urine samples following consumption of acute blueberry test meals.


Asunto(s)
Antocianinas/sangre , Antocianinas/orina , Análisis Químico de la Sangre/métodos , Urinálisis/métodos , Arándanos Azules (Planta)/química , Cromatografía Liquida , Humanos , Espectrometría de Masas en Tándem , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA