Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
ACS Med Chem Lett ; 15(6): 864-872, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38894924

RESUMEN

We were attracted to the therapeutic potential of inhibiting Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING E3 ligase that plays a critical role in regulating the activation of T cells. However, given that only protein-protein interactions were involved, it was unclear whether inhibition by a small molecule would be a viable approach. After screening an ∼6 billion member DNA-encoded library (DEL) using activated Cbl-b, we identified compound 1 as a hit for which the cis-isomer (2) was confirmed by biochemical and surface plasmon resonance (SPR) assays. Our hit optimization effort was greatly accelerated when we obtained a cocrystal structure of 2 with Cbl-b, which demonstrated induced binding at the substrate binding site, namely, the Src homology-2 (SH2) domain. This was quite noteworthy given that there are few reports of small molecule inhibitors that bind to SH2 domains and block protein-protein interactions. Structure- and property-guided optimization led to compound 27, which demonstrated measurable cell activity, albeit only at high concentrations.

2.
J Immunol Methods ; 531: 113715, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936465

RESUMEN

Antibody-dependent cellular phagocytosis (ADCP) is a cellular process by which antibody-opsonized targets (pathogens or cells) activate the Fc receptors on the surface of phagocytes to induce phagocytosis, resulting in internalization and degradation of pathogens or target cells through phagosome acidification. Besides NK cells-mediated antibody-dependent cellular cytotoxicity (ADCC), tumor-infiltrated monocytes and macrophages can directly kill tumor cells in the presence of tumor antigen-specific antibodies through ADCP, representing another attractive strategy for cancer immunotherapy. Even though several methods have been developed to measure ADCP, an automated and high-throughput quantitative assay should offer highly desirable advantages for drug discovery. In this study we established a new ADCP assay to identify therapeutical monoclonal antibodies (mAbs) that facilitate macrophages phagocytosis of live target cells. We used Incucyte, an imaging system for live cell analysis. By labeling the live target cells with a pH sensitive dye (pHrodo), we successfully monitored the ADCP in real time. We demonstrated that our image-based assay is robust and quantitative, suitable for screening and characterization of therapeutical mAbs that directly kill target cells through ADCP. Furthermore, we found different subtypes of macrophages have distinct ADCP activities using both mouse and human primary macrophages differentiated in vitro. By studying various mAbs with mutations in their Fc regions using our assay, we showed that the variants with increased binding to Fc gamma receptors (FcγRs) have enhanced ADCP activities.

4.
Br J Pharmacol ; 181(13): 2033-2052, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38486310

RESUMEN

BACKGROUND AND PURPOSE: RO7502175 is an afucosylated antibody designed to eliminate C-C motif chemokine receptor 8 (CCR8)+ Treg cells in the tumour microenvironment through enhanced antibody-dependent cellular cytotoxicity (ADCC). EXPERIMENTAL APPROACH: We report findings from preclinical studies characterizing pharmacology, pharmacokinetics (PK)/pharmacodynamics (PD) and safety profile of RO7502175 and discuss the translational PK/PD approach used to inform first-in-human (FiH) dosing strategy and clinical development in solid tumour indications. KEY RESULTS: RO7502175 demonstrated selective ADCC against human CCR8+ Treg cells from dissociated tumours in vitro. In cynomolgus monkeys, RO7502175 exhibited a biphasic concentration-time profile consistent with immunoglobulin G1 (IgG1) antibodies, reduced CCR8+ Treg cells in the blood, induced minimal and transient cytokine secretion, and was well tolerated with a no-observed-adverse-effect level (NOAEL) of 100 mg·kg-1. Moreover, RO7502175 caused minimal cytokine release from peripheral blood mononuclear cells (PBMCs) in vitro. A quantitative model was developed to capture surrogate anti-murine CCR8 antibody PK/PD and tumour dynamics in mice and RO7502175 PK/PD in cynomolgus monkeys. Subsequently, the model was used to project RO7502175 human PK and receptor occupancy (RO) in patients. Because traditional approaches resulted in a low FiH dose for this molecule, even with its superior preclinical safety profile, an integrated approach based on the totality of preclinical data and modelling insights was used for starting dose selection. CONCLUSION AND IMPLICATIONS: This work demonstrates a translational research strategy for collecting and utilizing relevant nonclinical data, developing a mechanistic PK/PD model and using a comprehensive approach to inform clinical study design for RO7502175.


Asunto(s)
Macaca fascicularis , Receptores CCR8 , Linfocitos T Reguladores , Animales , Humanos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Receptores CCR8/antagonistas & inhibidores , Receptores CCR8/inmunología , Ratones , Femenino , Masculino , Investigación Biomédica Traslacional , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Relación Dosis-Respuesta a Droga , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos
5.
Cell Rep ; 42(12): 113515, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096048

RESUMEN

Argonaute (AGO) proteins execute microRNA (miRNA)-mediated gene silencing. However, it is unclear whether all 4 mammalian AGO proteins (AGO1, AGO2, AGO3, and AGO4) are required for miRNA activity. We generate Ago1, Ago3, and Ago4-deficient mice (Ago134Δ) and find AGO1/3/4 to be redundant for miRNA biogenesis, homeostasis, or function, a role that is carried out by AGO2. Instead, AGO1/3/4 regulate the expansion of type 2 immunity via precursor mRNA splicing in CD4+ T helper (Th) lymphocytes. Gain- and loss-of-function experiments demonstrate that nuclear AGO3 interacts directly with SF3B3, a component of the U2 spliceosome complex, to aid global mRNA splicing, and in particular the isoforms of the gene Nisch, resulting in a dysregulated Nisch isoform ratio. This work uncouples AGO1, AGO3, and AGO4 from miRNA-mediated RNA interference, identifies an AGO3:SF3B3 complex in the nucleus, and reveals a mechanism by which AGO proteins regulate inflammatory diseases.


Asunto(s)
MicroARNs , Precursores del ARN , Animales , Ratones , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Receptores de Imidazolina/genética , Receptores de Imidazolina/metabolismo , Mamíferos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Nat Commun ; 14(1): 7940, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040762

RESUMEN

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.


Asunto(s)
Quimiocinas CC , Receptores de Quimiocina , Humanos , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacología , Receptores CCR8/genética , Ligandos , Quimiocina CCL1/metabolismo , Receptores de Quimiocina/genética , Anticuerpos
7.
Curr Protoc ; 2(9): e538, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36130036

RESUMEN

Effective and precise gene editing of T lymphocytes is critical for advancing the understanding of T cell biology and the development of next-generation cellular therapies. Although methods for effective CRISPR/Cas9-mediated gene knock-out in primary human T cells have been developed, complementary techniques for nonviral gene knock-in can be cumbersome and inefficient. Here, we report a simple and efficient method for nonviral CRISPR/Cas9-based gene knock-in utilizing plasmid-based donor DNA templates. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Purification of human CD4+ or CD8+ T cells from blood Basic Protocol 2: Activation of purified CD4+ or CD8+ T cells using TransAct CD3/CD28 agonist-conjugated nanomatrix Basic Protocol 3: Preparation of Cas9/sgRNA RNPs Basic Protocol 4: Transfection of CAS9-RNP and knock-in template into human T cells Support Protocol 1: Purity check following magnetic T cell isolation Support Protocol 2: Dextramer staining of TCR-edited T cells Support Protocol 3: Functional characterization of TCR knock-in T cells Support Protocol 4: Detection of knock-in reporter activity in CRISPR/CAS9-edited T cells.


Asunto(s)
Linfocitos T CD8-positivos , Sistemas CRISPR-Cas , Antígenos CD28/genética , Linfocitos T CD8-positivos/metabolismo , Sistemas CRISPR-Cas/genética , ADN , Técnicas de Sustitución del Gen , Humanos , Plásmidos/genética , Receptores de Antígenos de Linfocitos T/genética , Ribonucleoproteínas/genética
8.
J Exp Med ; 219(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35452075

RESUMEN

Genome engineering of T lymphocytes, the main effectors of antitumor adaptive immune responses, has the potential to uncover unique insights into their functions and enable the development of next-generation adoptive T cell therapies. Viral gene delivery into T cells, which is currently used to generate CAR T cells, has limitations in regard to targeting precision, cargo flexibility, and reagent production. Nonviral methods for effective CRISPR/Cas9-mediated gene knock-out in primary human T cells have been developed, but complementary techniques for nonviral gene knock-in can be cumbersome and inefficient. Here, we report a convenient and scalable nonviral method that allows precise gene edits and transgene integration in primary human T cells, using plasmid donor DNA template and Cas9-RNP. This method is highly efficient for single and multiplex gene manipulation, without compromising T cell function, and is thus valuable for use in basic and translational research.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , ADN/genética , Edición Génica/métodos , Humanos , Plásmidos/genética , Linfocitos T
9.
Nat Immunol ; 23(4): 568-580, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314846

RESUMEN

Tumor-associated macrophages are composed of distinct populations arising from monocytes or tissue macrophages, with a poorly understood link to disease pathogenesis. Here, we demonstrate that mouse monocyte migration was supported by glutaminyl-peptide cyclotransferase-like (QPCTL), an intracellular enzyme that mediates N-terminal modification of several substrates, including the monocyte chemoattractants CCL2 and CCL7, protecting them from proteolytic inactivation. Knockout of Qpctl disrupted monocyte homeostasis, attenuated tumor growth and reshaped myeloid cell infiltration, with loss of monocyte-derived populations with immunosuppressive and pro-angiogenic profiles. Antibody targeting of the receptor CSF1R, which more broadly eliminates tumor-associated macrophages, reversed tumor growth inhibition in Qpctl-/- mice and prevented lymphocyte infiltration. Modulation of QPCTL synergized with anti-PD-L1 to expand CD8+ T cells and limit tumor growth. QPCTL inhibition constitutes an effective approach for myeloid cell-targeted cancer immunotherapy.


Asunto(s)
Aminoaciltransferasas , Linfocitos T CD8-positivos , Quimiocinas , Neoplasias , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Linfocitos T CD8-positivos/patología , Quimiocinas/metabolismo , Inmunoterapia , Infiltración Leucémica , Ratones , Ratones Noqueados , Monocitos , Neoplasias/inmunología
10.
Nat Cancer ; 1(7): 681-691, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-35122038

RESUMEN

Inhibiting the programmed death-1 (PD-1) pathway is one of the most effective approaches to cancer immunotherapy, but its mechanistic basis remains incompletely understood. Binding of PD-1 to its ligand PD-L1 suppresses T-cell function in part by inhibiting CD28 signaling. Tumor cells and infiltrating myeloid cells can express PD-L1, with myeloid cells being of particular interest as they also express B7-1, a ligand for CD28 and PD-L1. Here we demonstrate that dendritic cells (DCs) represent a critical source of PD-L1, despite being vastly outnumbered by PD-L1+ macrophages. Deletion of PD-L1 in DCs, but not macrophages, greatly restricted tumor growth and led to enhanced antitumor CD8+ T-cell responses. Our data identify a unique role for DCs in the PD-L1-PD-1 regulatory axis and have implications for understanding the therapeutic mechanism of checkpoint blockade, which has long been assumed to reflect the reversal of T-cell exhaustion induced by PD-L1+ tumor cells.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/genética , Antígenos CD28/metabolismo , Células Dendríticas , Humanos , Ligandos , Neoplasias/genética , Receptor de Muerte Celular Programada 1/genética
11.
Semin Immunol ; 44: 101344, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31727465

RESUMEN

Interleukin (IL)-10 is an essential anti-inflammatory cytokine and functions as a negative regulator of immune responses to microbial antigens. IL-10 is particularly important in maintaining the intestinal microbe-immune homeostasis. Loss of IL-10 promotes the development of inflammatory bowel disease (IBD) as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions more generally to prevent excessive inflammation during the course of infection. Although IL-10 can be produced by virtually all cells of the innate and adaptive immune system, T cells constitute a non-redundant source for IL-10 in many cases. The various roles of T cell-derived IL-10 will be discussed in this review. Given that IL-10 is at the center of maintaining the delicate balance between effective immunity and tissue protection, it is not surprising that IL-10 expression is highly dynamic and tightly regulated. We summarize the environmental signals and molecular pathways that regulate IL-10 expression. While numerous studies have provided us with a deep understanding of IL-10 biology, the majority of findings have been made in murine models, prompting us to highlight gaps in our knowledge about T cell-derived IL-10 in the human system.


Asunto(s)
Interleucina-10/inmunología , Linfocitos T/inmunología , Animales , Homeostasis , Humanos , Infecciones/inmunología , Interleucina-10/genética , Intestinos/inmunología , Transcripción Genética
12.
Cancer Immunol Res ; 7(6): 963-976, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31064777

RESUMEN

Exhausted T cells have been described in cancer patients and murine tumor models largely based on their expression of various inhibitory receptors. Understanding of the functional attributes of these cells is limited. Here, we report that among CD8+ T cells in commonly used syngeneic tumor models, the coexpression of inhibitory receptors PD-1, LAG3, and TIM3 defined a group of highly activated and functional effector cells. Coexpression of these receptors further enriched for antigen-specific cells with increased T-cell receptor clonality. Anti-PD-L1 treatment increased the number and activation of these triple-positive CD8+ T cells without affecting the density of PD-1- cells. The intratumoral density of CD8+ T cells coexpressing inhibitory receptors negatively correlated with tumor burden. The density ratio and pretreatment phenotype of CD8+ T cells coexpressing inhibitory receptors was positively correlated with response across a variety of tumor models. Our results demonstrate that coexpression of inhibitory receptors is not a signifier of exhausted T cells, but rather can define a group of activated and functional effector cells in syngeneic tumor models. In the cancer setting, these cells could represent a heterogeneous population of not only exhausted but also highly activated cells responsive to treatment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Receptores Coestimuladores e Inhibidores de Linfocitos T/genética , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Neoplasias/etiología , Neoplasias/metabolismo , Animales , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor , Línea Celular Tumoral , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Isoinjertos , Ratones , Neoplasias/patología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
13.
Nat Immunol ; 20(4): 471-481, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30778241

RESUMEN

Foxp3+ regulatory T cells (Treg cells) are crucial for the maintenance of immune homeostasis both in lymphoid tissues and in non-lymphoid tissues. Here we demonstrate that the ability of intestinal Treg cells to constrain microbiota-dependent interleukin (IL)-17-producing helper T cell (TH17 cell) and immunoglobulin A responses critically required expression of the transcription factor c-Maf. The terminal differentiation and function of several intestinal Treg cell populations, including RORγt+ Treg cells and follicular regulatory T cells, were c-Maf dependent. c-Maf controlled Treg cell-derived IL-10 production and prevented excessive signaling via the kinases PI(3)K (phosphatidylinositol-3-OH kinase) and Akt and the metabolic checkpoint kinase complex mTORC1 (mammalian target of rapamycin) and expression of inflammatory cytokines in intestinal Treg cells. c-Maf deficiency in Treg cells led to profound dysbiosis of the intestinal microbiota, which when transferred to germ-free mice was sufficient to induce exacerbated intestinal TH17 responses, even in a c-Maf-competent environment. Thus, c-Maf acts to preserve the identity and function of intestinal Treg cells, which is essential for the establishment of host-microbe symbiosis.


Asunto(s)
Inmunoglobulina A/biosíntesis , Intestinos/inmunología , Microbiota , Proteínas Proto-Oncogénicas c-maf/fisiología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Células Cultivadas , Colitis/inmunología , Citocinas/metabolismo , Disbiosis , Regulación de la Expresión Génica , Homeostasis , Interleucina-10/biosíntesis , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-maf/genética , Proteínas Proto-Oncogénicas c-maf/metabolismo , Linfocitos T Reguladores/enzimología
14.
Artículo en Inglés | MEDLINE | ID: mdl-29038121

RESUMEN

Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses during host defense but also in autoimmune disorders, inflammatory diseases, and cancer. Although IL-10 itself primarily acts on leukocytes and has potent immunosuppressive functions, other family members preferentially target nonimmune compartments, such as tissue epithelial cells, where they elicit innate defense mechanisms to control viral, bacterial, and fungal infections, protect tissue integrity, and promote tissue repair and regeneration. As cytokines are prime drug targets, IL-10 family cytokines provide great opportunities for the treatment of autoimmune diseases, tissue damage, and cancer. Yet no therapy in this space has been approved to date. Here, we summarize the diverse biology of the IL-10 family as it relates to human disease and review past and current strategies and challenges to target IL-10 family cytokines for clinical use.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Citocinas/genética , Citocinas/uso terapéutico , Humanos , Inflamación/inmunología , Interleucina-10/química , Interleucina-10/fisiología , Interleucina-10/uso terapéutico , Neoplasias/inmunología
15.
Curr Protoc Immunol ; 124(1): e69, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30334617

RESUMEN

CRISPR/Cas9 has enabled the rapid and efficient generation of gene knockouts across various cell types of several species. T cells are central players in adaptive immune responses. Gene editing in primary T cells not only represents a valuable research tool, but is also critical for next generation immunotherapies, such as CAR T cells. Broad application of CRIPSR/Cas9 for gene editing in primary T cells has been hampered by limitations in transfection efficiency and the requirement for TCR stimulation. In this article, we provide a detailed protocol for Cas9/gRNA ribonucleoprotein (RNP) transfection of primary mouse and human T cells without the need for TCR stimulation that achieves near complete loss of target gene expression at the population level. This approach enables rapid target discovery and validation in both mouse and human primary T cells. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/genética , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Edición Génica , Humanos , Ratones , Ratones Noqueados , Ribonucleoproteínas/metabolismo , Transfección
16.
Sci Immunol ; 3(22)2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29678836

RESUMEN

Loss of function of the nuclear deubiquitinating enzyme BRCA1-associated protein-1 (BAP1) is associated with a wide spectrum of cancers. We report that tamoxifen-induced BAP1 deletion in adult mice resulted in severe thymic atrophy. BAP1 was critical for T cell development at several stages. In the thymus, BAP1 was required for progression through the pre-T cell receptor checkpoint. Peripheral T cells lacking BAP1 demonstrated a defect in homeostatic and antigen-driven expansion. Deletion of BAP1 resulted in suppression of E2F target genes and defects in cell cycle progression, which was dependent on the catalytic activity of BAP1, but did not require its interaction with host cell factor-1 (HCF-1). Loss of BAP1 led to increased monoubiquitination of histone H2A at Lys119 (H2AK119ub) throughout the T cell lineage, in particular in immature thymocytes, but did not alter trimethylation of histone H3 at Lys27 (H3K27me3). Deletion of BAP1 also abrogated B cell development in the bone marrow. Our findings uncover a nonredundant function for BAP1 in maintaining the lymphoid lineage.


Asunto(s)
Linfocitos T/metabolismo , Timocitos/metabolismo , Timo/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Animales , Atrofia , Ciclo Celular/genética , Perfilación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo , Ratones Noqueados , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Timo/patología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
17.
J Exp Med ; 215(3): 985-997, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29436394

RESUMEN

CRISPR (clustered, regularly interspaced, short palindromic repeats)/Cas9 (CRISPR-associated protein 9) has become the tool of choice for generating gene knockouts across a variety of species. The ability for efficient gene editing in primary T cells not only represents a valuable research tool to study gene function but also holds great promise for T cell-based immunotherapies, such as next-generation chimeric antigen receptor (CAR) T cells. Previous attempts to apply CRIPSR/Cas9 for gene editing in primary T cells have resulted in highly variable knockout efficiency and required T cell receptor (TCR) stimulation, thus largely precluding the study of genes involved in T cell activation or differentiation. Here, we describe an optimized approach for Cas9/RNP transfection of primary mouse and human T cells without TCR stimulation that results in near complete loss of target gene expression at the population level, mitigating the need for selection. We believe that this method will greatly extend the feasibly of target gene discovery and validation in primary T cells and simplify the gene editing process for next-generation immunotherapies.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes , Ribonucleoproteínas/metabolismo , Linfocitos T/metabolismo , Transfección , Animales , Células Cultivadas , Electroporación , Femenino , Células HEK293 , Humanos , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , ARN Guía de Kinetoplastida/metabolismo , Retroviridae/metabolismo
18.
Adv Exp Med Biol ; 941: 89-116, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27734410

RESUMEN

Interleukin (IL)-10 is an essential anti-inflammatory cytokine that plays important roles as a negative regulator of immune responses to microbial antigens. Loss of IL-10 results in the spontaneous development of inflammatory bowel disease as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions to prevent excessive inflammation during the course of infection. IL-10 can be produced in response to pro-inflammatory signals by virtually all immune cells, including T cells, B cells, macrophages, and dendritic cells. Given its function in maintaining the delicate balance between effective immunity and tissue protection, it is evident that IL-10 expression is highly dynamic and needs to be tightly regulated. The transcriptional regulation of IL-10 production in myeloid cells and T cells is the topic of this review. Drivers of IL-10 expression as well as their downstream signaling pathways and transcription factors will be discussed. We will examine in more detail how various signals in CD4+ T cells converge on common transcriptional circuits, which fine-tune IL-10 expression in a context-dependent manner.


Asunto(s)
Interleucina-10/genética , Interleucina-10/metabolismo , Animales , Epigénesis Genética/fisiología , Regulación de la Expresión Génica , Humanos , Procesamiento Proteico-Postraduccional , Interferencia de ARN
19.
Cytokine Growth Factor Rev ; 30: 1-17, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27481185

RESUMEN

Retinoic acid-related orphan receptor gamma t (RORγt) is a nuclear receptor, which is selectively expressed by various lymphocytes. RORγt is critical for the development of secondary and tertiary lymphoid organs, and for the thymic development of the T cell lineage. RORγt has been extensively studied as the master transcription factor of IL-17 expression and Th17 cells, which are strongly associated with various inflammatory and autoimmune conditions. Given its essential role in promoting pro-inflammatory responses, it is not surprising that the expression of RORγt is tightly controlled. By its nature as a nuclear receptor, RORγt activity is also regulated in a ligand-dependent manner, which makes it an attractive drug target. In addition, multiple post-translational mechanisms, including post-translational modifications, such as acetylation and ubiquitinylation, as well as interactions with various co-factors, modulate RORγt function. Here we attempt a comprehensive review of the post-translational regulation of RORγt, an area that holds the potential to transform the way we target the RORγt/IL-17 pathway, by enabling the development of safe and highly selective modulators of RORγt activity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Interleucina-17/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Animales , Humanos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA