Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Total Environ ; 664: 1107-1116, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30901784

RESUMEN

From 2nd April 2008 to 28th March 2009, a total 248 daily samples of the PM2.5 and PM10 were collected every sixth day parallel at two suburban sites (Libus and Suchdol) located at the two opposite sides (south and north, respectively) of Prague, Czech Republic. The PM2.5 samples were analyzed for ions by ion chromatography (IC), organic and elemental carbon (OC and EC) by OC/EC analyzer and PM10 samples also for 56 elements by inductively coupled plasma-mass spectrometry (ICP-MS). The average annual PM2.5 and PM10 was 24.4 ±â€¯13.0 µg m-3 and 26.7 ±â€¯15.1 µg m-3, respectively, in Prague-Libus, and 25.1 ±â€¯22.1 µg m-3 and 27.1 ±â€¯23.2 µg m-3, respectively, in Prague-Suchdol. Since the species forming large part of the aerosol mass were strongly correlated (Spearman's rank correlation coefficient rs > 0.80), the variability of PM2.5 and PM10 concentration was mainly driven by the local meteorology or regional and/or long range transport. PM10 mass closure was calculated based on analytical results with the average percentage of recalculated mass of 77 ±â€¯19% in Prague-Libus and 86 ±â€¯16% in Prague-Suchdol. The most abundant groups in PM10 at both sites during the four seasons were OM (Prague-Libus 34% and Prague-Suchdol 37%) and SIA (Prague-Libus 30% and Prague-Suchdol 34%). The Positive Matrix Factorization (PMF) was applied to the chemical composition of PM10 from both sites (124 samples) together to determine its sources. The nine factors were assigned as: mixed factor secondary sulphate and biomass burning, secondary sulphate, traffic, secondary nitrate, road dust, residential heating, aged sea salt, industry and mixed factor road salt along with aged sea salt. According to the polar plots and ventilation index (VI) east/west classification analysis the sources were separated based on origin to four categories local, urban agglomeration, regional and long range transport (LRT). The mixed source secondary sulphate and biomass burning, residential heating and industry were common sources of local origin at both sites. Prague-Suchdol was influenced by traffic related pollution from the urban agglomeration more than Prague-Libus where the traffic and road dust/salt were of local origin. The regional pollution by secondary sulphates and nitrate was also relevant at both sites along with long range transport of sea salt from North Atlantic Ocean, Norwegian Sea and North Sea. The contribution of the local sources to PM10 was significant mainly at Prague-Libus site. However, the sources of regional origin were also important and influence of urban agglomeration pollution to PM10 is not negligible as well.

2.
Environ Health ; 12(1): 74, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24004520

RESUMEN

BACKGROUND: To confirm or refute the hypothesis that the morbidity of children (since birth to age 5) born and living in the heavily polluted (PM10, benzo[a]pyrene) eastern part of Ostrava, Czech Republic, was higher than the morbidity of children living in other parts of the city. METHODS: Ten pediatricians in 5 districts of Ostrava abstracted the medical records of 1878 children born in 2001-2004 to list all illnesses of each child in ICD-10 codes. The children were divided into four groups according to their residence at birth and thereafter. Most of the children in the eastern area were living in the city district Radvanice and Bartovice. RESULTS: We report on the incidence of acute illnesses in 1535 children of Czech ethnicity in the first 5 years of life. The most frequent acute illnesses (over 45% of all diagnoses) were upper respiratory infections (URI: J00-J02, J06). In the first year of life, the incidence of URI in 183 children in the eastern area - 372 illnesses/100 children/year - was more than twice as high as in the other 3 areas with a total number of 1352 children. From birth to the age of 5 years, the incidences of pneumonia, tonsillitis, viral infections (ICD-10 code B34) and intestinal infectious diseases were also several times higher in children living in the eastern part of Ostrava. The lowest morbidity was found in children living in the less polluted western part of the city. CONCLUSIONS: The children born and living in the eastern part of the city of Ostrava had from birth through 5 years significantly higher incidence rates of acute illnesses than children in other parts of Ostrava. They also had a higher prevalence of wheezing, atopic dermatitis and allergic rhinitis.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Enfermedades Intestinales/epidemiología , Morbilidad , Otitis Media/epidemiología , Enfermedades Respiratorias/epidemiología , Virosis/epidemiología , Contaminación del Aire , Preescolar , Estudios de Cohortes , República Checa/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Enfermedades Intestinales/inducido químicamente , Masculino , Otitis Media/inducido químicamente , Prevalencia , Enfermedades Respiratorias/inducido químicamente , Estudios Retrospectivos , Virosis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA