Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Phylogenet Evol ; 173: 107509, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35589052

RESUMEN

Bald uakaris, genus Cacajao, are Amazonian primates currently classified as one species and four subspecies based on the patterns of pelage coloration. In this study, we test if their current taxonomy is represented by the phylogenetic relationship of the main lineages retrieved from molecular data. We included, for the first time, all bald uakari taxa in a mitochondrial (cytochrome b) and genome-wide (ddRAD) phylogenetic analyses. We also examined the pattern of pelage colouration in specimens from zoological collections. Having determined the number of lineages using Maximum Likelihood and the species tree using coalescent analyses, we test their divergence time using a Bayesian approach. While the cytochrome b analysis only recovered two clades, the ddRAD analysis supported the reciprocal monophyly of five lineages of bald uakaris, with all clades including only individuals with distinct and exclusive diagnostic phenotypic characters. We found that species diversification in Cacajao occurred during the last 300 Kya and may have been influenced by the formation of rivers and flooded forests in western Amazonia. We propose that the four bald uakari subspecies currently recognised can be upgraded to species level and we describe the white uakaris from the basin of the Rio Tarauacá as a new species.


Asunto(s)
Pitheciidae , Animales , Teorema de Bayes , Citocromos b/genética , ADN Mitocondrial/genética , Genoma , Filogenia
2.
J Biogeogr ; 49(5): 979-992, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35506011

RESUMEN

Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.

3.
Zool Res ; 42(6): 761-771, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34643070

RESUMEN

The pygmy marmoset, the smallest of the anthropoid primates, has a broad distribution in Western Amazonia. Recent studies using molecular and morphological data have identified two distinct species separated by the Napo and Solimões-Amazonas rivers. However, reconciling this new biological evidence with current taxonomy, i.e., two subspecies, Cebuella pygmaea pygmaea (Spix, 1823) and Cebuella pygmaea niveiventris (Lönnberg, 1940), was problematic given the uncertainty as to whether Spix's pygmy marmoset ( Cebuella pygmaea pygmaea) was collected north or south of the Napo and Solimões-Amazonas rivers, making it unclear to which of the two newly revealed species the name pygmaea would apply. Here, we present the first molecular data from Spix's type specimen of Cebuella pygmaea, as well as novel mitochondrial genomes from modern pygmy marmosets sampled near the type locality (Tabatinga) on both sides of the river. With these data, we can confirm the correct names of the two species identified, i.e., C. pygmaea for animals north of the Napo and Solimões-Amazonas rivers and C. niveiventris for animals south of these two rivers. Phylogenetic analyses of the novel genetic data placed into the context of cytochrome b gene sequences from across the range of pygmy marmosets further led us to re-evaluate the geographical distribution for the two Cebuella species. We dated the split of these two species to 2.54 million years ago. We discuss additional, more recent, subdivisions within each lineage, as well as potential contact zones between the two species in the headwaters of these rivers.


Asunto(s)
Callitrichinae/clasificación , Callitrichinae/genética , ADN Mitocondrial/genética , Filogenia , Distribución Animal , Animales , Brasil , Especificidad de la Especie
4.
Conserv Biol ; 35(5): 1388-1395, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33484006

RESUMEN

Some conservation prioritization methods are based on the assumption that conservation needs overwhelm current resources and not all species can be conserved; therefore, a conservation triage scheme (i.e., when the system is overwhelmed, species should be divided into three groups based on likelihood of survival, and efforts should be focused on those species in the group with the best survival prospects and reduced or denied to those in the group with no survival prospects and to those in the group not needing special efforts for their conservation) is necessary to guide resource allocation. We argue that this decision-making strategy is not appropriate because resources are not as limited as often assumed, and it is not evident that there are species that cannot be conserved. Small population size alone, for example, does not doom a species to extinction; plants, reptiles, birds, and mammals offer examples. Although resources dedicated to conserving all threatened species are insufficient at present, the world's economic resources are vast, and greater resources could be dedicated toward species conservation. The political framework for species conservation has improved, with initiatives such as the UN Sustainable Development Goals and other international agreements, funding mechanisms such as The Global Environment Facility, and the rise of many nongovernmental organizations with nimble, rapid-response small grants programs. For a prioritization system to allow no extinctions, zero extinctions must be an explicit goal of the system. Extinction is not inevitable, and should not be acceptable. A goal of no human-induced extinctions is imperative given the irreversibility of species loss.


Asignación de Recursos para la Conservación, Resiliencia de Poblaciones Pequeñas y la Falacia del Triaje de Conservación Resumen Algunos métodos de priorización de la conservación están basados en el supuesto de que las necesidades de la conservación superan a los actuales recursos y que no todas las especies pueden ser conservadas; por lo tanto, se necesita un esquema de triaje (esto es, cuando el sistema está abrumado, las especies deben dividirse en tres grupos con base en su probabilidad de supervivencia y los esfuerzos deben enfocarse en aquellas especies dentro del grupo con las mejores probabilidades de supervivencia y a aquellas en el grupo sin probabilidades de supervivencia o aquellas en el grupo que no necesita esfuerzos especializados para su conservación se les deben reducir o negar los esfuerzos de conservación) para dirigir la asignación de recursos. Discutimos que esta estrategia para la toma de decisiones no es apropiada porque los recursos no están tan limitados como se asume con frecuencia y tampoco es evidente que existan especies que no puedan ser conservadas. Por ejemplo, tan sólo un tamaño poblacional pequeño no es suficiente para condenar a una especie a la extinción; contamos con ejemplos en plantas, reptiles, aves y mamíferos. Aunque actualmente todos los recursos dedicados a la conservación de todas las especies amenazadas son insuficientes, los recursos económicos mundiales son vastos y se podrían dedicar mayores recursos a la conservación de especies. El marco de trabajo político para la conservación de especies ha mejorado, con iniciativas como los Objetivos de Desarrollo Sustentable de la ONU y otros acuerdos internacionales, el financiamiento de mecanismos como el Fondo para el Medio Ambiente Mundial, y el surgimiento de muchas organizaciones no gubernamentales mediante programas de subsidios pequeños hábiles y de respuesta rápida. Para que un sistema de priorización no permita las extinciones, las cero extinciones deben ser un objetivo explícito del sistema. La extinción no es inevitable y no debería ser aceptable. El objetivo de cero extinciones inducidas por humanos es imperativo dada la irreversibilidad de la pérdida de especies.


Asunto(s)
Conservación de los Recursos Naturales , Triaje , Animales , Biodiversidad , Especies en Peligro de Extinción , Extinción Biológica , Mamíferos , Asignación de Recursos
5.
Mol Phylogenet Evol ; 132: 117-137, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30496844

RESUMEN

The taxonomy of the titi monkeys (Callicebinae) has recently received considerable attention. It is now recognised that this subfamily is composed of three genera with 33 species, seven of them described since 2002. Here, we describe a new species of titi, Plecturocebus, from the municipality of Alta Floresta, Mato Grosso, Brazil. We adopt an integrative taxonomic approach that includes phylogenomic analyses, pelage characters, and locality records. A reduced representation genome-wide approach was employed to assess phylogenetic relationships among species of the eastern Amazonian clade of the Plecturocebus moloch group. Using existing records, we calculated the Extent of Occurrence (EOO) of the new species and estimated future habitat loss for the region based on predictive models. We then evaluated the species' conservation status using the IUCN Red list categories and criteria. The new species presents a unique combination of morphological characters: (1) grey agouti colouration on the crown and dorsal parts; (2) entirely bright red-brown venter; (3) an almost entirely black tail with a pale tip; and (4) light yellow colouration of the hair on the cheeks contrasting with bright red-brown hair on the sides of the face. Our phylogenetic reconstructions based on maximum-likelihood and Bayesian methods revealed well-supported species relationships, with the Alta Floresta taxon as sister to P. moloch + P. vieirai. The species EOO is 10,166,653 ha and we predict a total habitat loss of 86% of its original forest habitat under a "business as usual" scenario in the next 24 years, making the newly discovered titi monkey a Critically Endangered species under the IUCN A3c criterion. We give the new titi monkey a specific epithet based on: (1) clear monophyly of this lineage revealed by robust genomic and mitochondrial data; (2) distinct and diagnosable pelage morphology; and (3) a well-defined geographical distribution with clear separation from other closely related taxa. Urgent conservation measures are needed to safeguard the future of this newly discovered and already critically endangered primate.


Asunto(s)
Pitheciidae/clasificación , Animales , Teorema de Bayes , Brasil , Citocromos b/genética , Ecosistema , Especies en Peligro de Extinción , Genoma , Mitocondrias/genética , Filogenia , Pitheciidae/anatomía & histología , Pitheciidae/genética , Polimorfismo de Nucleótido Simple
6.
PeerJ ; 6: e4869, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922508

RESUMEN

Primates occur in 90 countries, but four-Brazil, Madagascar, Indonesia, and the Democratic Republic of the Congo (DRC)-harbor 65% of the world's primate species (439) and 60% of these primates are Threatened, Endangered, or Critically Endangered (IUCN Red List of Threatened Species 2017-3). Considering their importance for global primate conservation, we examine the anthropogenic pressures each country is facing that place their primate populations at risk. Habitat loss and fragmentation are main threats to primates in Brazil, Madagascar, and Indonesia. However, in DRC hunting for the commercial bushmeat trade is the primary threat. Encroachment on primate habitats driven by local and global market demands for food and non-food commodities hunting, illegal trade, the proliferation of invasive species, and human and domestic-animal borne infectious diseases cause habitat loss, population declines, and extirpation. Modeling agricultural expansion in the 21st century for the four countries under a worst-case-scenario, showed a primate range contraction of 78% for Brazil, 72% for Indonesia, 62% for Madagascar, and 32% for DRC. These pressures unfold in the context of expanding human populations with low levels of development. Weak governance across these four countries may limit effective primate conservation planning. We examine landscape and local approaches to effective primate conservation policies and assess the distribution of protected areas and primates in each country. Primates in Brazil and Madagascar have 38% of their range inside protected areas, 17% in Indonesia and 14% in DRC, suggesting that the great majority of primate populations remain vulnerable. We list the key challenges faced by the four countries to avert primate extinctions now and in the future. In the short term, effective law enforcement to stop illegal hunting and illegal forest destruction is absolutely key. Long-term success can only be achieved by focusing local and global public awareness, and actively engaging with international organizations, multinational businesses and consumer nations to reduce unsustainable demands on the environment. Finally, the four primate range countries need to ensure that integrated, sustainable land-use planning for economic development includes the maintenance of biodiversity and intact, functional natural ecosystems.

7.
Mol Phylogenet Evol ; 120: 170-182, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29175546

RESUMEN

The pygmy marmoset, Cebuella pygmaea, the smallest of the New World monkeys, has one of the largest geographical distributions of the Amazonian primates. Two forms have been recognized: Cebuella pygmaea pygmaea (Spix, 1823), and C. p. niveiventris Lönnberg, 1940. In this study, we investigated if the separation of pygmy marmosets into these two clades can be corroborated by molecular data. We also examine and compare coloration of the pelage in light of the new molecular results. We analyzed the mtDNA cytochrome b gene and, for the first time for any Neotropical primate, we used a reduced representation genome sequencing approach (ddRADseq) to obtain data for recently collected, geographically representative samples from the Rio Japurá, a northern tributary of the Rio Solimões and from the Javarí, Jutaí, Juruá, Madeira and Purus river basins, all tributaries south of the Solimões. We estimated phylogenies and diversification times under both maximum likelihood and Bayesian inference criteria. Our analysis showed two highly supported clades, with intraclade divergences much smaller than interclade divergences, indicating two species of Cebuella: one from the Rio Japurá and one to the south of Solimões. The interpretation of our results in light of the current taxonomy is not trivial however. Lönnberg stated that the type of Spix's pygmy marmoset (type locality 'near Tabatinga') was obtained from the south of the Solimões, and his description of the distinct niveiventris from Lago Ipixuna, south of the Solimões and several hundred kilometres east of Tabatinga, was based on a comparison with specimens that he determined as typical pygmaea that were from the upper Rio Juruá (south of the Solimões). As such it remains uncertain whether the name pygmaea should be applicable to the pygmy marmosets north of the Rio Solimões (Tabatinga type locality) or south (near Tabatinga but across the Solimões). Finally, our analysis of pelage coloration revealed three phenotypic forms: (1) south of the Rio Solimoes, (2) Eirunepé-Acre, upper Juruá basin; and (3) Japurá. More samples from both sides of Solimões in the region of Tabatinga will be necessary to ascertain the exact type locality for Spix's pygmaea and to resolve the current uncertainties surrounding pygmy marmoset taxonomy.


Asunto(s)
Callithrix/clasificación , Animales , Teorema de Bayes , Callithrix/genética , Citocromos b/clasificación , Citocromos b/genética , Citocromos b/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Funciones de Verosimilitud , Masculino , Fenotipo , Filogenia , Análisis de Secuencia de ADN
8.
Am J Primatol ; 79(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28898502

RESUMEN

The crested capuchin monkey (Sapajus robustus) is an endangered species endemic to the highly fragmented Atlantic Forest of Brazil. Surveys for S. robustus were carried out over a 25-month period (2003-2005) to obtain more precise geographical limits for the western range of the species. Previously published localities for S. robustus were mapped, and each point was given a 25-km radius "buffer zone." The largest forest remnants in the buffer zones (>300 ha) in Minas Gerais were visited in order to interview the local people and/or survey the forests directly using playback recordings of S. robustus. Camera traps were used in key localities if interviews suggested the presence of capuchins but no animals were sighted during the surveys. Of 127 valid interviews, only 39 people reported the presence of Sapajus in nearby forest fragments. We confirmed the presence of Sapajus in only 19 of these. S. robustus occurred in four, and S. libidinosus, S. nigritus, S. xanthosternos, or S. robustus × S. nigritus (hybrids?) occurred in the remaining 15. Based on our study, the estimated geographical distribution of S. robustus is 119,654 km2 , which represents a reduction of more than 70,000 km2 when compared to its formerly described range. The geographical limits as defined in this study are: northeast-the Jequitinhonha River; northwest and west-the Jequitinhonha River; southwest-the Suaçuí Grande River and the Espinhaço mountains; southeast-the Doce River; east-the Atlantic Ocean. A probable hybrid zone where capuchin monkeys have morphological features of both S. nigritus and S. robustus was found between the Santo Antônio and the Suaçuí Grande rivers. The elucidation of the geographical distribution of S. robustus is important for its conservation, facilitating the delineation of priority areas for the creation of reserves and the initiation of studies of the species' ecology and behavior.


Asunto(s)
Distribución Animal , Cebus , Especies en Peligro de Extinción , Animales , Brasil , Bosques
9.
Sci Adv ; 3(1): e1600946, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28116351

RESUMEN

Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats-mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world's primates and the costs of their loss to ecosystem health and human society is imperative.


Asunto(s)
Cercopithecidae , Ecosistema , Extinción Biológica , Animales
10.
Front Zool ; 13: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26937245

RESUMEN

BACKGROUND: Titi monkeys, Callicebus, comprise the most species-rich primate genus-34 species are currently recognised, five of them described since 2005. The lack of molecular data for titi monkeys has meant that little is known of their phylogenetic relationships and divergence times. To clarify their evolutionary history, we assembled a large molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, including representatives from all recognised species groups. Phylogenetic relationships were inferred using concatenated maximum likelihood and Bayesian analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. RESULTS: Our results show four distinct Callicebus clades, for the most part concordant with the currently recognised morphological species-groups-the torquatus group, the personatus group, the donacophilus group, and the moloch group. The cupreus and moloch groups are not monophyletic, and all species of the formerly recognized cupreus group are reassigned to the moloch group. Two of the major divergence events are dated to the Miocene. The torquatus group, the oldest radiation, diverged c. 11 Ma; and the Atlantic forest personatus group split from the ancestor of all donacophilus and moloch species at 9-8 Ma. There is little molecular evidence for the separation of Callicebus caligatus and C. dubius, and we suggest that C. dubius should be considered a junior synonym of a polymorphic C. caligatus. CONCLUSIONS: Considering molecular, morphological and biogeographic evidence, we propose a new genus level taxonomy for titi monkeys: Cheracebus n. gen. in the Orinoco, Negro and upper Amazon basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus group), and Plecturocebus n. gen. in the Amazon basin and Chaco region (donacophilus and moloch groups).

11.
Curr Biol ; 25(10): R431-8, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25989087

RESUMEN

Humans depend on biodiversity in myriad ways, yet species are being rapidly lost due to human activities. The ecosystem services approach to conservation tries to establish the value that society derives from the natural world such that the true cost of proposed development actions becomes apparent to decision makers. Species are an integral component of ecosystems, and the value they provide in terms of services should be a standard part of ecosystem assessments. However, assessing the value of species is difficult and will always remain incomplete. Some of the most difficult species' benefits to assess are those that accrue unexpectedly or are wholly unanticipated. In this review, we consider recent examples from a wide variety of species and a diverse set of ecosystem services that illustrate this point and support the application of the precautionary principle to decisions affecting the natural world.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Agentes de Control Biológico , Bivalvos , Secuestro de Carbono , Conservación de los Recursos Naturales , Cultura , Ecología/economía , Humanos , Calidad del Agua , Humedales
12.
Primates ; 56(2): 131-44, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25688005

RESUMEN

Cruz Lima's saddle-back tamarin Saguinus fuscicollis cruzlimai Hershkovitz, 1966, was described from a painting by Eládio da Cruz Lima in his book Mammals of Amazonia, Vol. 1, Primates (1945). The painting was of four saddle-back tamarins from the upper Rio Purus, one of them distinct and the inspiration for Hershkovitz to describe it as a new subspecies. Its exact provenance was unknown, however, and the specimen was lost. Surveys in the Purus National Forest in 2011 resulted in sightings of this tamarin along the north bank of the Rio Inauini, a left-bank tributary of the middle Purus, and also on the left bank of the Purus, north and south of the Rio Inauini. It is possible that it extends north as far as the Rio Pauini, and that S. f. primitivus Hershkovitz, 1977, occurs north of the Pauini as far the Rio Tapauá, both also left-bank tributaries of the Purus. Morphometric and molecular genetic analyses and the coloration of the pelage indicate that this tamarin differs from its neighbors sufficiently to be considered a full species. In his doctoral dissertation [2010, Taxonomy, Phylogeny and Distribution of Tamarins (Genus Saguinus Hoffmannsegg, 1807) Georg-August Universität, Göttingen], C. Matauschek found that saddle-back and black-mantle tamarins diverged from the tamarin lineage around 9.2 million years ago; time enough to warrant their classification in a distinct genus. Leontocebus Wagner, 1840, is the first name available. In this article we re-describe Cruz Lima's saddle-back tamarin. We propose a neotype with a precise locality, and make it a full species in the genus Leontocebus.


Asunto(s)
Callitrichinae/anatomía & histología , Callitrichinae/clasificación , Distribución Animal , Animales , Brasil , Callitrichinae/genética , Callitrichinae/fisiología , Citocromos b/genética , Femenino , Masculino , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Saguinus/anatomía & histología , Saguinus/clasificación , Saguinus/genética , Saguinus/fisiología , Análisis de Secuencia de ADN
13.
Mol Phylogenet Evol ; 82 Pt B: 413-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24857784

RESUMEN

The marmosets and tamarins, Family Callitrichidae, are Neotropical primates with over 60 species and subspecies that inhabit much of South America. Although callitrichids exhibit a remarkable widespread distribution, attempts to unravel their biogeographic history have been limited by taxonomic confusion and the lack of an appropriate statistical biogeographic framework. Here, we construct a time-calibrated multi-locus phylogeny from GenBank data and the callitrichid literature for 38 taxa. We use this framework to conduct statistical biogeographic analyses of callitrichids using BioGeoBEARS. The DIVAj model is the best supported reconstruction of biogeographic history among our analyses and suggests that the most recent common ancestor to the callitrichids was widespread across forested regions c. 14 Ma. There is also support for multiple colonizations of the Atlantic forest region from the Amazon basin, first by Leontopithecus c. 11 Ma and later by Callithrix c. 5 Ma. Our results show support for a 9 million year old split between a small-bodied group and large-bodied group of tamarins. These phylogenetic data, in concert with the consistent difference in body size between the two groups and geographical patterns (small-bodied tamarins and large-bodied tamarins have an unusually high degree of geographic overlap for congeners) lend support to our suggestion to split Saguinus into two genera, and we propose the use of distinct generic names; Leontocebus and Saguinus, respectively.


Asunto(s)
Evolución Biológica , Callitrichinae/clasificación , Filogenia , Animales , Callitrichinae/inmunología , Geografía , Modelos Genéticos , Análisis de Secuencia de ADN , América del Sur
14.
PLoS One ; 9(11): e111671, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25372894

RESUMEN

The development and private sectors are increasingly considering "biodiversity offsets" as a strategy to compensate for their negative impacts on biodiversity, including impacts on great apes and their habitats in Africa. In the absence of national offset policies in sub-Saharan Africa, offset design and implementation are guided by company internal standards, lending bank standards or international best practice principles. We examine four projects in Africa that are seeking to compensate for their negative impacts on great ape populations. Our assessment of these projects reveals that not all apply or implement best practices, and that there is little standardization in the methods used to measure losses and gains in species numbers. Even if they were to follow currently accepted best-practice principles, we find that these actions may still fail to contribute to conservation objectives over the long term. We advocate for an alternative approach in which biodiversity offset and compensation projects are designed and implemented as part of a National Offset Strategy that (1) takes into account the cumulative impacts of development in individual countries, (2) identifies priority offset sites, (3) promotes aggregated offsets, and (4) integrates biodiversity offset and compensation projects with national biodiversity conservation objectives. We also propose supplementary principles necessary for biodiversity offsets to contribute to great ape conservation in Africa. Caution should still be exercised, however, with regard to offsets until further field-based evidence of their effectiveness is available.


Asunto(s)
Biodiversidad , Ecosistema , Hominidae , África , Animales , Conservación de los Recursos Naturales , Geografía
15.
Evol Anthropol ; 23(1): 8-10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24591133

RESUMEN

Primatology as a discrete branch of science involving the study of primate behavior and ecology took off in the 1960s after discovery of the importance of primates as models for biomedical research and the realization that primates provide insights into the evolutionary history of humans. Osman Hill's unfortunately incomplete monograph series on the comparative anatomy and taxonomy of the primates(1) and the Napiers' 1967 A Handbook of Living Primates(2) recorded the world's view of primate diversity at this time. This taxonomy remained the baseline for nearly three decades, with the diversity of each genus being represented by some species, but extensively as subspecies.


Asunto(s)
Antropología Física , Primates/clasificación , Animales , Evolución Biológica , Zoología
16.
Am J Primatol ; 74(4): 273-86, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22328205

RESUMEN

Capuchin monkey behavior has been the focus of increasing numbers of captive and field studies in recent years, clarifying behavioral and ecological differences between the two morphological types: the gracile and the robust capuchins (also referred to as untufted and tufted). Studies have tended to focus on the gracile species Cebus capucinus (fewer data are available for C. albifrons, C. olivaceus, and C. kaapori) and on Cebus apella, a name that has encompassed all of the robust capuchins since the 1960s. As a result, it is difficult to ascertain the variation within either gracile or robust types. The phylogenetic relationships between gracile and robust capuchins have also, until now, remained obscure. Recent studies have suggested two independent Pliocene radiations of capuchins stemming from a common ancestor in the Late Miocene, about 6.2 millions of years ago (Ma). The present-day gracile capuchins most likely originated in the Amazon, and the robust capuchins in the Atlantic Forest to the southeast. Sympatry between the two types is explained by a recent expansion of robust capuchins into the Amazon (ca. 400,000 years ago). Morphological data also support a division of capuchins into the same two distinct groups, and we propose the division of capuchin monkeys into two genera, Sapajus Kerr, 1792, for robust capuchins and Cebus Erxleben, 1777, for gracile capuchins, based on a review of extensive morphological, genetic, behavioral, ecological, and biogeographic evidence.


Asunto(s)
Cebus/clasificación , Animales , Conducta Animal , Cebus/anatomía & histología , Cebus/fisiología , Cebus/psicología , Clasificación , Filogenia , América del Sur , Especificidad de la Especie
17.
Am J Primatol ; 74(4): 381-93, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22311697

RESUMEN

The untufted, or gracile, capuchin monkeys are currently classified in four species, Cebus albifrons, C. capucinus, C. olivaceus, and C. kaapori, with all but C. kaapori having numerous described subspecies. The taxonomy is controversial and their geographic distributions are poorly known. Cebus albifrons is unusual in its disjunct distribution, with a western and central Amazonian range, a separate range in the northern Andes in Colombia, and isolated populations in Trinidad and west of the Andes in Ecuador and northern Peru. Here we examine previous morphological and molecular hypotheses of the taxonomy and phylogeny of Cebus. We construct a time-calibrated phylogeny based upon mitochondrial DNA sequences from 50 Cebus samples from across their range. Our data indicate that untufted capuchins underwent a radiation at about 2 Ma, and quickly diversified in both the Andes and the Amazon. We provide a provisional reassessment for the taxonomy of untufted capuchins in the Amazon, the Llanos, the Andes, Trinidad, and Central America, splitting currently paraphyletic taxa into several species, including: at least two Amazonian species (C. yuracus and C. unicolor); a species from the Guiana Shield (most likely the same as Humboldt's C. albifrons); two northern Andean species, C. versicolor, C. cesarae; C. brunneus (with trinitatis a junior synonym) on the Venezuelan coast, and C. adustus in the region of Lake Maracaibo; C. capucinus in northwestern Ecuador and Colombia, and Panama; C. imitator in Central America; C. olivaceus and C. castaneus occupying a large part of the Guiana Shield; and C. kaapori in the eastern Amazon, south of the Rio Amazonas. More intensive and extensive geographic sampling is needed, including that for some subspecies not represented here. Taxa from the southwestern Amazon (yuracus, cuscinus, and unicolor) and the phylogenetic position of Humboldt's Simia albifrons from the Orinoco remain particularly poorly defined.


Asunto(s)
Cebus/clasificación , Cebus/genética , Variación Genética , Animales , Genes Mitocondriales/genética , Datos de Secuencia Molecular , Pigmentación
18.
Primates ; 52(1): 25-39, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20878203

RESUMEN

A detailed understanding of the range of the golden-mantle tamarin, Saguinus tripartitus (Milne Edwards, 1878), in Amazonian Peru and Ecuador is of particular relevance, not only because it is poorly known but also because it was on the basis of its supposed sympatry with the saddleback tamarin (S. fuscicollis lagonotus) that Thorington (Am J Primatol 15:367-371, 1988) argued that it is a distinct species rather than a saddleback tamarin subspecies, as was believed by Hershkovitz (Living new world monkeys, vol I. The University of Chicago Press, Chicago, 1977). A number of surveys have been carried out since 1988 in the supposed range of S. tripartitus, in both Ecuador and Peru. Here we summarize and discuss these issues and provide a new suggestion for the geographic range of this species; that is, between the ríos Napo and Curaray in Peru and extending east into Ecuador. We also review current evidence for the distributions of Spix's black-mantle tamarin (S. nigricollis nigricollis), Graells' black-mantle tamarin (S. n. graellsi), and the saddleback tamarin (S. fuscicollis lagonotus), which are also poorly known, and examine the evidence regarding sympatry between them. We conclude that despite the existence of a number of specimens with collecting localities that indicate overlap in their geographic ranges, the fact that the four tamarins are [corrected] of similar size and undoubtedly very similar in their feeding habits militates strongly against the occurrence of sympatry among them.


Asunto(s)
Biodiversidad , Preferencias Alimentarias , Saguinus/clasificación , Saguinus/fisiología , Animales , Colombia , Conservación de los Recursos Naturales , Ecuador , Geografía , Perú , Filogenia
19.
Am J Primatol ; 59(1): 29-44, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12526037

RESUMEN

During 1990-1992, a survey of the golden lion tamarin, Leontopithecus rosalia, was carried out throughout its known distribution area. Forest remnants were identified by visual interpretation of Landsat-TM satellite images. Localities occupied by L. rosalia were first identified by interviews with local people. All forests more than 20 ha in size, and for which two or more interviews suggested the presence of the species, were surveyed using "play-back" recordings of lion tamarin long calls. The total wild population of L. rosalia, including that of the Poço das Antas Biological Reserve, was estimated to be 562 individuals in 109 groups. The lion tamarins were generally found in four major areas of forest (six or more groups per forest, not including Poço das Antas), with a further 12 groups isolated in small forest patches. Currently the species' distribution is restricted to just four municipalities in the state of Rio de Janeiro: Silva Jardim, Cabo Frio, Saquarema, and Araruama. Although they are typically confined to lowland forest of <300 m altitude, L. rosalia was recorded at an altitude of 550 m in one locality. Average group size varied from 3.6 to 5.7 individuals, and densities from 0.39 groups/km(2) to 2.35 groups/km(2) (2.17 individuals/ km(2) to 8.53 individuals/km(2)). Six of the isolated groups found during the survey were successfully translocated to a forest of 2400 ha. There is now also a significant population of reintroduced lion tamarins. Overall, however, the possibilities for further expansion of the wild population are severely limited.


Asunto(s)
Callitrichinae/fisiología , Animales , Brasil , Ambiente , Densidad de Población , Árboles , Vocalización Animal
20.
Proc Natl Acad Sci U S A ; 99(4): 2067-71, 2002 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-11854502

RESUMEN

Species diversity is unevenly distributed across the globe, with terrestrial diversity concentrated in a few restricted biodiversity hotspots. These areas are associated with high losses of primary vegetation and increased human population density, resulting in growing numbers of threatened species. We show that conservation of these hotspots is critical because they harbor even greater amounts of evolutionary history than expected by species numbers alone. We used supertrees for carnivores and primates to estimate that nearly 70% of the total amount of evolutionary history represented in these groups is found in 25 biodiversity hotspots.


Asunto(s)
Evolución Biológica , Mutación , Animales , Clasificación , Extinción Psicológica , Filogenia , Primates , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA