Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36850085

RESUMEN

Polymer electrolytes (PEs) have been thoroughly investigated due to their advantages that can prevent severe problems of Li-ion batteries, such as electrolyte leakage, flammability, and lithium dendrite growth to enhance thermal and electrochemical stabilities. Gel polymer electrolytes (GPEs) using in situ polymerization are typically prepared by thermal or UV curing methods by initially impregnating liquid precursors inside the electrode. The in situ method can resolve insufficient interfacial problems between electrode and electrolyte compared with the ex situ method, which could led to a poor cycle performance due to high interfacial resistance. In addition to the abovementioned advantage, it can enhance the form factor of bare cells since the precursor can be injected before polymerization prior to the solidification of the desired shapes. These suggest that gel polymer electrolytes prepared by in situ polymerization are a promising material for lithium-ion batteries.

2.
RSC Adv ; 9(47): 27500-27509, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35529237

RESUMEN

A poly(ethylene)-reinforced anion exchange membrane based on cross-linked quaternary-aminated polystyrene and quaternary-aminated poly(phenylene oxide) was developed for reverse electrodialysis. Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Herein, to lower the membrane cost, inexpensive polystyrene and poly(phenylene oxide) were used as ionomer backbones. The ionomers were impregnated into a poly(ethylene) matrix supporter and were cross-linked in situ to enhance the mechanical and chemical properties. Pre-treatment of the porous PE matrix membrane with atmospheric plasma increased the compatibility between the ionomer and matrix membrane. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (0.69-1.67 Ω cm2) was lower than that of AMV (2.58 Ω cm2). Moreover, the transport number of PErC(5)QPS-QPPO was comparable to that of AMV, despite the thinness (51 µm) of the former. The RED stack with the PErC(5)QPS-QPPO membrane provided an excellent maximum power density of 1.82 W m-2 at a flow rate of 100 mL min-1, which is 20.7% higher than that (1.50 W m-2) of the RED stack with the AMV membrane.

3.
Talanta ; 182: 273-278, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29501152

RESUMEN

A technique for wafer-level detection of organic contaminations via surface-assisted laser desorption/ionization time-of-flight mass spectrometry was developed. To replace the organic matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, zinc oxide-reduced graphene oxide (ZnO-rGO) hybrid was prepared by a hydrothermal reaction and used as the matrix in the detection of benzo[a]pyrene (B[a]P). By varying the rGO content and the amount of hybrid, the optimal rGO content in the hybrid for the detection of B[a]P was determined to be 4 wt% and the optimal amount of hybrid was 20 ng. The limit of detection of this method was found to be 1.6 × 1014 C atoms cm-2, which is lower than the concentration of residual organic contamination at which serious failure occurs during semiconductor fabrication. This method was also successfully used to detect other aromatic and aliphatic species on a semiconductor wafer. This approach is fast, accurate, simple, and inexpensive compared to other conventional methods, and can be used to identify localized micro-contamination in the semiconductor industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA