RESUMEN
The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.
RESUMEN
COQ7 pathogenetic variants cause primary CoQ10 deficiency and a clinical phenotype of encephalopathy, peripheral neuropathy, or multisystemic disorder. Early diagnosis is essential for promptly starting CoQ10 supplementation. Here, we report novel compound heterozygous variants in the COQ7 gene responsible for a prenatal onset (20 weeks of gestation) of hypertrophic cardiomyopathy and intestinal dysmotility in a Bangladesh consanguineous family with two affected siblings. The main clinical findings were dysmorphisms, recurrent intestinal occlusions that required ileostomy, left ventricular non-compaction cardiomyopathy, ascending aorta dilation, arterial hypertension, renal dysfunction, diffuse skin desquamation, axial hypotonia, neurodevelopmental delay, and growth retardation. Exome sequencing revealed compound heterozygous rare variants in the COQ7 gene, c.613_617delGCCGGinsCAT (p.Ala205HisfsTer48) and c.403A>G (p.Met135Val). In silico analysis and functional in vitro studies confirmed the pathogenicity of the variants responsible for abolished activities of complexes I + III and II + III in muscle homogenate, severe decrease of CoQ10 levels, and reduced basal and maximal respiration in patients' fibroblasts. The first proband deceased at 14 months of age, whereas supplementation with a high dose of CoQ10 (30 mg/kg/day) since the first days of life modified the clinical course in the second child, showing a recovery of milestones acquirement at the last follow-up (18 months of age). Our study expands the clinical spectrum of primary CoQ10 deficiency due to COQ7 gene defects and highlights the essential role of multidisciplinary and combined approaches for a timely diagnosis.
Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Femenino , Humanos , Lactante , Masculino , Ataxia/genética , Ataxia/patología , Ataxia/diagnóstico , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/diagnóstico , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/diagnóstico , Debilidad Muscular/genética , Debilidad Muscular/patología , Mutación , Oftalmoplejía/genética , Oftalmoplejía/patología , Oftalmoplejía/diagnóstico , Linaje , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ubiquinona/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismoRESUMEN
GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.
Asunto(s)
Ataxia , Enfermedades Mitocondriales , Debilidad Muscular , Ubiquinona , Ubiquinona/deficiencia , Adulto , Humanos , Ubiquinona/genética , Ubiquinona/uso terapéutico , Ubiquinona/metabolismo , Estudios de Seguimiento , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Mutación , Proteínas del Complejo SMN/genéticaRESUMEN
Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role but also via the oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis and shed light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.
Asunto(s)
Células Eucariotas , Ubiquinona , Humanos , Descarboxilación , Células Eucariotas/metabolismo , Oxidación-Reducción , Escherichia coli/genética , Escherichia coli/metabolismo , Estrés Oxidativo , Proteínas Mitocondriales/metabolismoRESUMEN
Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role, but also via oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis, and shed new light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.
RESUMEN
Most of the cell's energy is obtained through the degradation of glucose, fatty acids, and amino acids by different pathways that converge on the mitochondrial oxidative phosphorylation (OXPHOS) system, which is regulated in response to cellular demands. The lipid molecule Coenzyme Q (CoQ) is essential in this process by transferring electrons to complex III in the electron transport chain (ETC) through constant oxidation/reduction cycles. Mitochondria status and, ultimately, cellular health can be assessed by measuring ETC oxygen consumption using respirometric assays. These studies are typically performed in established or primary cell lines that have been cultured for several days. In both cases, the respiration parameters obtained may have deviated from normal physiological conditions in any given organ or tissue. Additionally, the intrinsic characteristics of cultured single fibers isolated from skeletal muscle impede this type of analysis. This paper presents an updated and detailed protocol for the analysis of respiration in freshly isolated mitochondria from mouse skeletal muscle. We also provide solutions to potential problems that could arise at any step of the process. The method presented here could be applied to compare oxygen consumption rates in diverse transgenic mouse models and study the mitochondrial response to drug treatments or other factors such as aging or sex. This is a feasible method to respond to crucial questions about mitochondrial bioenergetics metabolism and regulation.
Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Animales , Metabolismo Energético , Ratones , Mitocondrias/metabolismo , Mitocondrias Musculares/química , Músculo Esquelético , Consumo de Oxígeno/fisiologíaRESUMEN
Ubiquinol, the reduced form of Coenzyme Q10 (CoQ10), is a key factor in bioenergetics and antioxidant protection. During competition, professional soccer players suffer from considerable physical stress causing high risk of muscle damage. For athletes, supplementation with several antioxidants, including CoQ10, is widely recommended to avoid oxidative stress and muscle damage. We performed an observational study of plasma parameters associated with CoQ10 levels in professional soccer players of the Spanish First League team Athletic Club de Bilbao over two consecutive seasons (n = 24-25) in order determine their relationship with damage, stress and performance during competition. We analyzed three different moments of the competition: preterm, initial phase and mid phase. Metabolites and factors related with stress (testosterone/cortisol) and muscle damage (creatine kinase) were determined. Physical activity during matches was analyzed over the 2015/16 season in those players participating in complete matches. In the mid phase of competition, CoQ10 levels were higher in 2015/16 (906.8 ± 307.9 vs. 584.3 ± 196.3 pmol/mL, p = 0.0006) High levels of CoQ10 in the hardest phase of competition were associated with a reduction in the levels of the muscle-damage marker creatine kinase (Pearsons' correlation coefficient (r) = - 0.460, p = 0.00168) and a trend for the stress marker cortisol (r = -0.252, p = 0.150). Plasma ubiquinol was also associated with better kidney function (r = -0.287, p = 0.0443 for uric acid). Furthermore, high CoQ10 levels were associated with higher muscle performance during matches. Our results suggest that high levels of plasma CoQ10 can prevent muscle damage, improve kidney function and are associated with higher performance in professional soccer players during competition.
Asunto(s)
Fútbol , Ubiquinona , Antioxidantes , Atletas , Biomarcadores , Creatina Quinasa , Humanos , Hidrocortisona , Estrés Oxidativo , Fútbol/fisiología , Ubiquinona/análogos & derivados , Ubiquinona/sangreRESUMEN
Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.
Asunto(s)
Envejecimiento/genética , Transferasas Alquil y Aril/genética , Ataxia/genética , GTP Fosfohidrolasas/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Debilidad Muscular/genética , Enfermedad de Niemann-Pick Tipo C/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Envejecimiento/metabolismo , Transferasas Alquil y Aril/metabolismo , Animales , Ataxia/metabolismo , Ataxia/patología , Metabolismo Energético/genética , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Mutación , Proteína Niemann-Pick C1/genética , Proteína Niemann-Pick C1/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Transducción de Señal , Ubiquinona/genética , Ubiquinona/metabolismoRESUMEN
Coenzyme Q10 (CoQ10) deficiency syndrome is a rare disease included in the family of mitochondrial diseases, which is a heterogeneous group of genetic disorders characterized by defective energy production. CoQ10 biosynthesis in humans requires at least 11 gene products acting in a multiprotein complex within mitochondria. The high-throughput screening (HTS) method based on the stabilization of the CoQ biosynthesis complex (Q-synthome) produced by the COQ8 gene overexpression is proven here to be a successful method for identifying new molecules from natural extracts that are able to bypass the CoQ6 deficiency in yeast mutant cells. The main features of the new approach are the combination of two yeast targets defective in genes with different functions on CoQ6 biosynthesis to secure the versatility of the molecule identified, the use of glycerol as a nonfermentable carbon source providing a wide growth window, and the stringent conditions required to mark an extract as positive. The application of this pilot approach to a representative subset of 1200 samples of the Library of Natural Products of Fundación MEDINA resulted in the finding of nine positive extracts. The fractionation of three of the nine extracts allowed the identification of five molecules; two of them are present in molecule databases of natural extracts and three are nondescribed molecules. The use of this screening method opens the possibility of discovering molecules with CoQ10-bypassing action useful as therapeutic agents to fight against mitochondrial diseases in human patients.
Asunto(s)
Ataxia/tratamiento farmacológico , Productos Biológicos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Enfermedades Mitocondriales/tratamiento farmacológico , Debilidad Muscular/tratamiento farmacológico , Ubiquinona/deficiencia , Ubiquinona/genética , Ataxia/genética , Productos Biológicos/farmacología , Humanos , Mitocondrias/enzimología , Enfermedades Mitocondriales/genética , Modelos Genéticos , Debilidad Muscular/genética , Mutación/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genéticaRESUMEN
Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of ADCK2, a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle. In order to better understand the etiology of this rare disorder, we generated a heterozygous Adck2 knockout mouse model to perform in vivo and cellular studies using integrated analysis of physiological and omics data (transcriptomics-metabolomics). The data showed that Adck2+/- mice exhibited impaired fatty acid oxidation, liver dysfunction, and mitochondrial myopathy in skeletal muscle resulting in lower physical performance. Significant decrease in Coenzyme Q (CoQ) biosynthesis was observed and supplementation with CoQ partially rescued the phenotype both in the human subject and mouse model. These results indicate that ADCK2 is involved in organismal fatty acid metabolism and in CoQ biosynthesis in skeletal muscle. We propose that patients with isolated myopathies and myopathies involving lipid accumulation be tested for possible ADCK2 defect as they are likely to be responsive to CoQ supplementation.
RESUMEN
An inverse correlation between thyroid hormone levels and longevity has been reported in several species and reduced thyroid hormone levels have been proposed as a biomarker for healthy aging and metabolic fitness. However, hypothyroidism is a medical condition associated with compromised health and reduced life expectancy. Herein, we show, using wild-type and the Pax8 ablated model of hypothyroidism in mice, that hyperthyroidism and severe hypothyroidism are associated with an overall unhealthy status and shorter lifespan. Mild hypothyroid Pax8 +/- mice were heavier and displayed insulin resistance, hepatic steatosis and increased prevalence of liver cancer yet had normal lifespan. These pathophysiological conditions were precipitated by hepatic mitochondrial dysfunction and oxidative damage accumulation. These findings indicate that individuals carrying mutations on PAX8 may be susceptible to develop liver cancer and/or diabetes and raise concerns regarding the development of interventions aiming to modulate thyroid hormones to promote healthy aging or lifespan in mammals.
Asunto(s)
Envejecimiento/metabolismo , Hígado Graso/patología , Resistencia a la Insulina/fisiología , Neoplasias Hepáticas/patología , Hígado/patología , Hormonas Tiroideas/sangre , Animales , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/sangre , Masculino , Ratones , Ratones Noqueados , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismoRESUMEN
OBJECTIVES: Bioavailability of supplements with coenzyme Q10 (CoQ10) in humans seems to depend on the excipients of formulations and on physiological characteristics of the individuals. The aim of this study was to determine which factors presented in CoQ10 supplements affect the different response to CoQ10 in humans. METHODS: We tested seven different supplement formulations containing 100 mg of CoQ10 in 14 young, healthy individuals. Bioavailability was measured as area under the curve of plasma CoQ10 levels over 48 h after ingestion of a single dose. Measurements were repeated in the same group of 14 volunteers in a double-blind crossover design with a minimum of 4 wk washout between intakes. RESULTS: Bioavailability of the formulations showed large differences that were statistically significant. The two best absorbable formulations were soft-gel capsules containing ubiquinone (oxidized CoQ10) or ubiquinol (reduced CoQ10). The matrix used to dissolve CoQ10 and the proportion and addition of preservatives such as vitamin C affected the bioavailability of CoQ10. Although control measurements documented that all formulations contained 100 mg of either CoQ10 or ubiquinol, some of the participants showed high and others lower capacity to reach high increase of CoQ10 in blood, indicating the participation of individual unknown physiological factors. CONCLUSION: This study highlights the importance of individually adapted selection of best formulations to reach the highest bioavailability of CoQ10 in humans.
Asunto(s)
Suplementos Dietéticos , Portadores de Fármacos , Lípidos , Ubiquinona/administración & dosificación , Administración Oral , Adolescente , Adulto , Área Bajo la Curva , Disponibilidad Biológica , Cápsulas , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Solubilidad , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/farmacocinética , Adulto JovenRESUMEN
Coenzyme Q10 (CoQ10) is a redox molecule critical for the proper function of energy metabolism and antioxidant defenses. Despite its essential role in cellular metabolism, the regulation of CoQ10 biosynthesis in humans remains mostly unknown. Herein, we determined that PPTC7 is a regulatory protein of CoQ10 biosynthesis required for human cell survival. We demonstrated by in vitro approaches that PPTC7 is a bona fide protein phosphatase that dephosphorylates the human COQ7. Expression modulation experiments determined that human PPTC7 dictates cellular CoQ10 content. Using two different approaches (PPTC7 over-expression and caloric restriction), we demonstrated that PPTC7 facilitates and improves the human cell adaptation to respiratory conditions. Moreover, we determined that the physiological role of PPTC7 takes place in the adaptation to starvation and pro-oxidant conditions, facilitating the induction of mitochondrial metabolism while preventing the accumulation of ROS. Here we unveil the first post-translational mechanism regulating CoQ10 biosynthesis in humans and propose targeting the induction of PPTC7 activity/expression for the treatment of CoQ10-related mitochondrial diseases.