Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169574, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145669

RESUMEN

Cork is one of the main non-timber forest products in the world. Most of its production is concentrated in the Iberian Peninsula, a climate change hotspot. Climate warming may lead to increased aridification and reduce cork production in that region. However, we still lack assessments of climate-cork relationships across ample geographical and climatic gradients explicitly considering site aridity. We quantified cork growth by measuring cork ring width and related it to climate variables and a drought index using dendrochronology. Four cork oak (Quercus suber) forests located from north eastern Spain to south western Morocco (31.5-41.5° N) and subjected to different aridity levels were sampled. Warm conditions in spring to early summer, when cork is formed, reduced cork width, whereas high precipitation in winter and spring enhanced it. The response of cork to increased water availability in summer peaked (r = 0.89, p = 0.00002) in the most arid and continental site considering 14-month long droughts. A severe drought caused a disproportionate loss of cork production in this site, where for every five-fold decrease in the drought index, the cork-width index declined by a factor of thirteen. Therefore, site aridity determines the responses of cork growth to the soil water availability resulting from accumulated precipitation during winter and spring previous to cork growth and until summer. In general, this cumulative water balance, which is very dependent on temperature and evapotranspiration rate, is critical for cork production, especially in continental, dry sites. The precipitation during the hydrological year can be used as a proxy of cork production in similar sites. Assessments of climate-cork relationships in the western Mediterranean basin could be used as analogues to forecast the impacts of aridification on future cork production.


Asunto(s)
Bosques , Quercus , Temperatura , Europa (Continente) , Sequías , Agua , Quercus/fisiología
2.
Front Plant Sci ; 9: 1818, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687338

RESUMEN

Disease emergence in northern and boreal forests has been mostly due to tree-pathogen encounters lacking a co-evolutionary past. However, outbreaks involving novel interactions of the host or the pathogen with the environment have been less well documented. Following an increase of records in Northern Europe, the first large outbreak of Diplodia sapinea on Pinus sylvestris was discovered in Sweden in 2016. By reconstructing the development of the epidemic, we found that the attacks started approx. 10 years back from several isolated trees in the stand and ended up affecting almost 90% of the trees in 2016. Limited damage was observed in other plantations in the surroundings of the affected stand, pointing to a new introduced pathogen as the cause of the outbreak. Nevertheless, no genetic differences based on SSR markers were found between isolates of the outbreak area and other Swedish isolates predating the outbreak or from other populations in Europe and Asia Minor. On a temporal scale, we saw that warm May and June temperatures were associated with higher damage and low tree growth, while cold and rainy conditions seemed to favor growth and deter disease. At a spatial scale, we saw that spread occurred predominantly in the SW aspect-area of the stand. Within that area and based on tree-ring and isotope (δ13C) analyses, we saw that disease occurred on trees that over the years had shown a lower water-use efficiency (WUE). Spore traps showed that highly infected trees were those producing the largest amount of inoculum. D. sapinea impaired latewood growth and reduced C reserves in needles and branches. D. sapinea attacks can cause serious economic damage by killing new shoots, disrupting the crown, and affecting the quality of stems. Our results show that D. sapinea has no limitations in becoming a serious pathogen in Northern Europe. Management should focus on reducing inoculum, especially since climate change may bring more favorable conditions for this pathogen. Seedlings for planting should be carefully inspected as D. sapinea may be present in a latent stage in asymptomatic tissues.

3.
Glob Chang Biol ; 23(10): 4106-4116, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28100041

RESUMEN

Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes.


Asunto(s)
Cambio Climático , Pinus sylvestris/crecimiento & desarrollo , Clima , Bosques , Geografía , Temperatura , Árboles
4.
Tree Physiol ; 28(7): 1077-82, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18450572

RESUMEN

Seed mass and relative growth rate (RGR) are important determinants of early seedling growth, and hence seedling establishment. Although a positive interspecific relationship between seed mass and seedling dry mass is well established, much less is known about the relationships among seed mass, seedling mass and RGR within species. We examined relationships among seed mass, seedling mass and RGR within and among maternal plant lines of Scots pine (Pinus sylvestris L.). To assess the effects of seed mass and maternal origin on RGR, individual seeds from two seed crops (years 2004 and 2005) of ten maternal plants growing under nursery conditions were weighed and then germinated. Seed mass was strongly determined by maternal plant, and seedling mass was largely determined by seed mass, with a positive correlation between these variables both across and within maternal plants. In contrast, RGR was weakly related to seed mass, with no consistent pattern in the sign of the relationship. It is well known that species differ in RGR and that RGR is related to seed mass across species. Lack of consistent evidence for this relationship within maternal lines, and for Scots pine overall, suggests that the relationship is not directly causal, but reflects consistent evolutionary covariation in these two physiologically independent traits.


Asunto(s)
Pinus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Biomasa , Pinus/metabolismo , Plantones/metabolismo , Semillas/metabolismo , España , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA