Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.443
Filtrar
1.
Nat Prod Res ; : 1-7, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39381963

RESUMEN

Zedoarondiol, a newly discovered compound derived from the roots of zedoary turmeric, a traditional Chinese herb, has demonstrated potential in reducing inflammation of the vascular endothelium and safeguarding it from harm. Nonetheless, the precise mechanism underlying these effects remains to be elucidated. In this study, we established a model of HUVEC injury induced by hydrogen peroxide. We observed whether Zedoarondiol could reduce the adhesion and transendothelial migration (TEM) of inflammatory cells by inhibiting the expression of VCAM-1 and ICAM-1 in HUVECs. The research findings indicate that utilising Zedoarondiol resulted in a significant reduction in the adhesion rate of THP1 cells to HUVECs, leading to a more condensed cytoskeletal structure. Moreover, Zedoarondiol demonstrated a decrease in NF-κBß-Ser536 phosphorylation levels in H2O2-stimulated human umbilical vein endothelial cells, resulting in a hindered capacity to bind to target genes like ICAM-1 and VCAM-1, This findings may provide a new pharmacological basis and scientific evidence for Zedoarondiol to slow the atherosclerosis progression by maintaining endothelial function.

2.
Front Immunol ; 15: 1466497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39399495

RESUMEN

Background: In recent years, there has been significant research interest in immunotherapy for colorectal cancer (CRC). Specifically, immunotherapy has emerged as the primary treatment for patients with mismatch repair gene defects (dMMR) or microsatellite highly unstable (MSI-H) who have colorectal cancer. Yet, there is currently no data to support the practicality and safety of neoadjuvant immunotherapy for colorectal cancer with dMMR or MSI-H. Therefore, a study was conducted to identify the postoperative pathology, safety profile, and imaging features of patients with dMMR or MSI-H CRC following neoadjuvant immunotherapy. Methods: The retrospective study was carried out on patients with locally advanced or metastatic CRC who received immunotherapy at Sichuan Cancer Hospital, with approval from the hospital's ethics committee. The study aimed to assess the short-term effectiveness of immunotherapy by focusing on pathological complete response (pCR) as the primary outcome, while also considering secondary endpoints such as objective response rate, disease-free survival, and safety profile. Results: Twenty patients with dMMR/MSI-H CRC who underwent neoadjuvant immunotherapy as part of the treatment were enrolled between May 2019 and February 2024 at Sichuan Cancer Hospital. Out of these patients, eight patients received PD-1 blockade monotherapy as neoadjuvant treatment, while 12 were administered a combined therapy of anti-CTLA-4 and anti-PD-1. 12 patients received Nivolumab plus Ipilimumab regimen and 8 patients received PD-1 blockades (2 patients were Pembrolizumab, 2 patients were Sintilimab, 4 patients were Tislelizumab) monotherapy. Additionally, 19 patients underwent surgery after immunotherapy and of these, 15 (75.0%) achieved complete pathological response (pCR), 8 (66.7%) achieved the same on Nivolumab plus Ipilimumab immunotherapy while 7 (87.5%) achieved on PD-1 antibody monotherapy. The overall response rate (ORR) was 75%, with 45.0% of patients experiencing grade I/II immunotherapy-related adverse events. The most frequent adverse event observed was increased ALT i.e. 20%. Notably, no postoperative complications were observed. Conclusion: Based on the findings, neoadjuvant immunotherapy for colorectal cancer may be both safe and effective in clinical practice. Furthermore, the study suggested that dual immunotherapy could potentially increase the immunotherapy cycle and contribute to a superior pCR rate. However, the conclusion emphasized the need for further prospective clinical trials to validate these results.


Asunto(s)
Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Inmunoterapia , Inestabilidad de Microsatélites , Terapia Neoadyuvante , Humanos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Terapia Neoadyuvante/métodos , Femenino , Persona de Mediana Edad , Masculino , Estudios Retrospectivos , Anciano , Inmunoterapia/métodos , Adulto , Resultado del Tratamiento , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos
3.
New Phytol ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400347

RESUMEN

Triterpene skeletons, catalyzing by 2,3-oxidosqualene cyclases (OSCs), are essential for synthesis of steroids and triterpenoids. In japonica rice cultivars Zhonghua11, a total of 12 OsOSCs have been found. While the catalytic functions of OsOSC1, 3, 4, 9, and 10 remain unclear, the functions of the other OsOSCs have been well studied. In this study, we conducted a comprehensive analysis of 12 OSC genes within genus Oryza with the aid of 63 genomes from cultivated and wild rice. We found that OSC genes are relatively conserved within genus Oryza with a few exceptions. Collinearity analysis further suggested that, throughout the evolutionary history of genus Oryza, the OSC genes have not undergone significant rearrangements or losses. Further functional analysis of 5 uncharacterized OSCs revealed that OsOSC10 was a friedelin synthase, which affected the development of rice grains. Additionally, the reconstructed ancestral sequences of Oryza OSC3 and Oryza OSC9 had lupeol synthase and poaceatapetol synthase activity, respectively. The discovery of friedelin synthase in rice unlocks a new catalytic path and biological function of OsOSC10. The pan-genome analysis of OSCs within genus Oryza gives insights into the evolutionary trajectory and products diversity of Oryza OSCs.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39392065

RESUMEN

Organic-inorganic hybrid perovskite solar cells (OIH-PSCs) have developed rapidly in the past decade, and the commercialization of OIH-PSCs demands low-cost hole-transport materials (HTMs) with high performance and stability. The present study synthesized two organic HTMs containing dibenzothiophene S-dioxide as the acceptor unit and triphenylamine as the donor (denoted by TPAF-SO2 and TPA-SO2). In TPAF-SO2, the methoxy group and adjacent fluorine atom were introduced to decrease the highest occupied molecular orbital energy level. In TPA-SO2, the methyl sulfide group is the end group that can passivate the lead ion. TPAF-SO2 and TPA-SO2 exhibit hole-transport mobilities as high as 1.12 × 10-3 and 2.31 × 10-3 cm2 v-1 s-1, respectively, and strongly passivate Pb vacancies. Compared with TPAF-SO2, TPA-SO2 is more suitable for the growth of perovskite crystals. The perovskite grown on the latter has a lower trap density and higher carrier mobility; thus, both the nonradiative recombination and the charge-transport loss are decreased. The OIH-PSC based on TPA-SO2 as the HTM achieved a power conversion efficiency (PCE) as high as 22.08%, whereas the device based on TPAF-SO2 achieved a PCE of only 18.42%. In addition, the unencapsulated device based on TPA-SO2 can maintain 85% of the initial PCE after being stored in N2 for 1200 h, whereas the device based on TPAF-SO2 decayed rapidly to zero in 800 h under the same conditions.

5.
Mol Phylogenet Evol ; 200: 108182, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39222738

RESUMEN

The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.


Asunto(s)
Liliaceae , Filogenia , Liliaceae/genética , Liliaceae/clasificación , Transcriptoma , Evolución Molecular , Plastidios/genética , ADN Mitocondrial/genética
6.
Oncol Lett ; 28(5): 532, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39290960

RESUMEN

Malignant melanoma meningeal metastasis (MMMM) is a rare clinical condition with a poor prognosis. The observation of hemorrhagic cerebrospinal fluid (CSF) in this type of disease is relatively uncommon and may indicate disease progression. The present study reports the case of a 51-year-old male with malignant melanoma who presented with a headache. Imaging studies did not identify abnormalities; however, an analysis of the CSF revealed hemorrhagic changes. The results of cytological examination of the CSF showed melanoma cells, leading to the final diagnosis of MMMM. This case emphasizes the importance of monitoring neurological symptoms and conducting comprehensive CSF cytological examination in patients with melanoma, creating disease awareness in clinicians.

7.
Front Plant Sci ; 15: 1425158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220016

RESUMEN

Introduction: The genus Acronema, belonging to Apiaceae, includes approximately 25 species distributed in the high-altitude Sino-Himalayan region from E Nepal to SW China. This genus is a taxonomically complex genus with often indistinct species boundaries and problematic generic delimitation with Sinocarum and other close genera, largely due to the varied morphological characteristics. Methods: To explore the phylogenetic relationships and clarify the limits of the genus Acronema and its related genera, we reconstructed a reliable phylogenetic framework with high support and resolution based on two molecular datasets (plastome data and ITS sequences) and performed morphological analyses. Results: Both phylogenetic analyses robustly supported that Acronema was a non-monophyletic group that fell into two clades: Acronema Clade and East-Asia Clade. We also newly sequenced and assembled sixteen Acronema complete plastomes and performed comprehensively comparative analyses for this genus. The comparative results showed that the plastome structure, gene number, GC content, codon bias patterns were high similarity, but varied in borders of SC/IR and we identified six different types of SC/IR border. The SC/IR boundaries of Acronema chienii were significantly different from the other Acronema members which was consistent with the type VI pattern in the genus Tongoloa. We also identified twelve potential DNA barcode regions (ccsA, matK, ndhF, ndhG, psaI, psbI, rpl32, rps15, ycf1, ycf3, psaI-ycf4 and psbM-trnD) for species identification in Acronema. The molecular evolution of Acronema was relatively conservative that only one gene (petG) was found to be under positive selection (ω = 1.02489). Discussion: The gene petG is one of the genes involved in the transmission of photosynthetic electron chains during photosynthesis, which plays a crucial role in the process of photosynthesis in plants. This is also a manifestation of the adaptive evolution of plants in high-altitude areas to the environment. In conclusion, our study provides novel insights into the plastome adaptive evolution, phylogeny, and taxonomy of genus Acronema.

9.
Angew Chem Int Ed Engl ; : e202414089, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221861

RESUMEN

The exploration of novel functionalized supramolecular coordination complexes (SCCs) can enable new applications in domains that include purification and sensing. In this study, employing a coordination-driven self-assembly strategy, we designed and prepared a series of benzochalcogenodiazole-based metallohelicates as high-efficiency charge transfer surface-enhanced Raman scattering (SERS) substrates, expanding the range of applications for these metallohelicates. Through structural modifications, including the substitution of single heteroatoms on ligands, replacement of coordinating metals, and alteration of ligand framework linkages, the Raman performance of these metallohelicates as substrates were systematically optimized. Notably, the SERS enhancement factors (EFs) of the metallohelicate-based SERS substrates were significantly enhanced to levels as high as 1.03 × 107, which rivals the EFs of noble metals devoid of "hot spots". Additionally, the underlying Raman enhancement mechanisms of these metallohelicates have been investigated through a combination of control experiments and theoretical calculations. This study not only demonstrates the utility of metallohelicates as SERS substrates but also offers insights and materials for the development of high-efficiency new charge transfer SERS substrates.

10.
Plant Physiol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39268876

RESUMEN

Soybean [Glycine max (L.) Merr.] is a major oil-producing crop worldwide. Although several related proteins regulating soybean oil accumulation have been reported, little is known about the regulatory mechanisms. In this study, we characterized vascular plant one-zinc-finger 1A (GmVOZ1A) that interacts with WRINKLED 1a (GmWRI1a) using yeast two-hybrid library screening. The GmVOZ1A-GmWRI1a interaction was further verified by protein-protein interaction assays in vivo and in vitro. GmVOZ1A enhanced the seed fatty acid and oil contents by regulating genes involved in lipid biosynthesis. Conversely, a loss-of-function mutation in GmVOZ1A resulted in a reduction in triacylglycerol (TAG) content in soybean. Protein-DNA interaction assays revealed that GmVOZ1A and GmWRI1a cooperate to up-regulate the expression level of acyl-coenzymeA-binding protein 6a (GmACBP6a) and promote the accumulation of TAG. In addition, GmACBP6a overexpression promoted seed fatty acid and oil contents, as well as increased seed size and 100-seed weight. Taken together, these findings indicate that the transcription factor GmVOZ1A regulates soybean oil synthesis and cooperates with GmWRI1a to up-regulate GmACBP6a expression and oil biosynthesis in soybean. The results lay a foundation for a comprehensive understanding of the regulatory mechanisms underlying soybean oil biosynthesis and will contribute to improving soybean oil production through molecular breeding approaches.

11.
Phys Rev Lett ; 133(9): 096803, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39270175

RESUMEN

The efficient detection of the Néel vector in antiferromagnets is one of the prerequisites toward antiferromagnetic spintronic devices and remains a challenging problem. Here, we propose that the layer Hall effect can be used to efficiently detect the Néel vector in centrosymmetric magnetoelectric antiferromagnets. Thanks to the robust surface magnetization of magnetoelectric antiferromagnets, the combination of sizable exchange field and an applied electric field results in the layer-locked spin-polarized band edges. Moreover, the Berry curvature can be engineered efficiently by an electric field, which consequently gives rise to the layer-locked Berry curvature responsible for the layer Hall effect. Importantly, it is demonstrated that the layer Hall conductivity strongly depends on the Néel vector orientation and exhibits rich electromagnetic responses, which can be used to detect the Néel vector reversal. Based on density functional theory calculations, we exemplify those phenomena in the prototypical Cr_{2}O_{3} compound. A complete list of the magnetic point groups sustaining the layer Hall effect is presented, aiding the search for realistic materials. Our work proposes a novel approach to detect the Néel vector and holds great promise for antiferromagnetic spintronic applications.

12.
J Mol Model ; 30(10): 322, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225909

RESUMEN

CONTEXT: The adsorptions of gas (CO, CO2, NH3) by metal (Au, Ag, Cu)-doped single layer WS2 are studied by density functional theory. The doping of metal atoms makes WS2 behave as n-type semiconductors. The final adsorption sites for CO, CO2, and NH3 are close to the atomic sites of the doped metal. The adsorptions of CO and NH3 gases on Cu/WS2, Ag/WS2, and Au/WS2 are dominated by chemisorption. The doped metal atoms enhance the hybridization of the substrate with the gas molecular orbitals, which contributes to the charge transfer and enhances the adsorption of the gas with the material surface. The adsorptions of CO and NH3 on Cu/WS2 and Ag/WS2 allow favorable desorption in a short time after heating. The single-layer Cu/WS2 is proved to have the potential to be used as a reliable recyclable sensor for CO. This work provides a theoretical basis for developing high-performance WS2-based gas sensors. METHODS: In this paper, the adsorption energy, electronic structure, charge transfer, and recovery time of CO, CO2, and NH3 in the doped system have been investigated based on the CASTEP code of density functional theory. The exchange correlation function used is the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The TS (Tkatchenko-Scheffler) dispersion correction method was used to involve the effects of van der Waals interaction on the adsorption energies for all adsorption system. The ultrasoft pseudopotentials are chosen and the plane-wave cut-off energies are set to 500 eV. The k-point mesh generated by the Monkhorst package scheme is used to perform the numerical integration of the Brillouin zone and 5 × 5 × 1 k-point grid is used. The tolerances of total energy convergence, maximum ionic force, ionic displacement, and stress component are 1.0 × 10-5 eV/atom, 0.03 eV/Å, 0.001 Å, and 0.05 GPa, respectively.

13.
Front Microbiol ; 15: 1458456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318429

RESUMEN

A novel species of Mucor was identified as the causal agent of a brown rot of Prunus domestica (European plum), widely grown in the south of Xinjiang, China. This disease first appears as red spots after the onset of the fruits. With favorable environmental conditions, fruit with infected spots turn brown, sag, expand, wrinkle, and harden, resulting in fruit falling. Fungal species were isolated from infected fruits. A phylogenetic analysis based on internal transcribed spacer (ITS) regions and the large subunit (LSU) of the nuclear ribosomal RNA (rRNA) gene regions strongly supported that these isolates made a distinct evolutionary lineage in Mucor (Mucoromycetes, Mucoraceae) that represents a new taxonomic species, herein named as Mucor xinjiangensis. Microscopic characters confirmed that these strains were morphologically distinct from known Mucor species. The pathogenicity of M. xinjiangensis was confirmed by attaching an agar disk containing mycelium on fruits and re-isolation of the pathogen from symptomatic tissues. Later, fourteen fungicides were selected to determine the inhibitory effect on the pathogen. Further, results showed that difenoconazole had the best effect on the pathogen and the strongest toxicity with the smallest half maximal effective concentration (EC50) value, followed by a compound fungicide composed of difenoconazole with azoxystrobin, mancozeb, prochloraz with iprodione, pyraclostrobin with tebuconazole, and trifloxystrobin with tebuconazole and ethhylicin. Present study provides the basis for the prevention and control of the novel plum disease and its pathogen.

14.
Nature ; 633(8029): 338-343, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39261617

RESUMEN

The presence of disorder substantially influences the behaviour of physical systems. It can give rise to slow or glassy dynamics, or to a complete suppression of transport as in Anderson insulators1, where normally extended wavefunctions such as light fields or electronic Bloch waves become exponentially localized. The combined effect of disorder and interactions is central to the richness of condensed-matter physics2. In bosonic systems, it can also lead to additional quantum states such as the Bose glass3,4-an insulating but compressible state without long-range phase coherence that emerges in disordered bosonic systems and is distinct from the well-known superfluid and Mott insulating ground states of interacting bosons. Here we report the experimental realization of the two-dimensional Bose glass using ultracold atoms in an eight-fold symmetric quasicrystalline optical lattice5. By probing the coherence properties of the system, we observe a Bose-glass-to-superfluid transition and map out the phase diagram in the weakly interacting regime. We furthermore demonstrate that it is not possible to adiabatically traverse the Bose glass on typical experimental timescales by examining the capability to restore coherence and discuss the connection to the expected non-ergodicity of the Bose glass. Our observations are in good agreement with recent quantum Monte Carlo predictions6 and pave the way for experimentally testing the connection between the Bose glass, many-body localization and glassy dynamics more generally7,8.

15.
Angew Chem Int Ed Engl ; : e202412821, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105426

RESUMEN

The rational manipulation of the surface reconstruction of catalysts is a key factor in achieving highly efficient water oxidation, but it is a challenge due to the complex reaction conditions. Herein, we introduce a novel in situ reconstruction strategy under a gradient magnetic field to form highly catalytically active species on the surface of ferromagnetic/paramagnetic CoFe2O4@CoBDC core-shell structure for electrochemical oxygen evolution reaction (OER). We demonstrate that the Kelvin force from the cores' local gradient magnetic field modulates the shells' surface reconstruction, leading to a higher proportion of Co2+ as active sites. These Co sites with optimized electronic configuration exhibit more favorable adsorption energy for oxygen-containing intermediates and lower the activation energy of the overall catalytic reaction. As a result, a significant enhancement in OER performance is achieved with a large current density increment about 128 % at 1.63 V and an overpotential reduction by 28 mV at 10 mA cm-2 after reconstruction. Interestingly, after removing the external magnetic field, the activity could persist for over 100 h. This work showcases the directional surface reconstruction of catalysts under a gradient magnetic field for enhanced water oxidation.

16.
ACS Appl Mater Interfaces ; 16(34): 45704-45712, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39199021

RESUMEN

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising hole-transporting material for perovskite light-emitting diodes (PeLEDs). However, intrinsic luminance quenching at the PEDOT:PSS/perovskite interface causes deterioration of performance. Here, we develop a facile and effective strategy to passivate the interface defects via the modification of PEDOT:PSS by l-norvaline. As a pre-buried additive, l-norvaline not only reacts with PEDOT:PSS, but also forms the coordination and hydrogen bond with perovskite. We demonstrated that the generation of buried defects at the PEDOT:PSS/perovskite interface originates from the crystallization process of the perovskite film during annealing by in-situ photoluminescence measurements. The surface of l-norvaline-modified PEDOT:PSS can passivate the interfacial defects and inhibit exciton quenching. As a result, the PeLED shows a good device performance with a luminance of 80089 cd m-2 at 509 nm and an external quantum efficiency of 13.04%.

17.
Clin Nutr ; 43(9): 2156-2163, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142109

RESUMEN

BACKGROUND & AIMS: The circulating vitamin D level that is optimal for health is unknown. This study aimed to examine the association between circulating vitamin D level and risk of all-cause and cause-specific mortality. METHODS: This prospective cohort study included 18,797 Korean adults aged 40 years or older, living in rural areas, with no history of cancer or cardiovascular disease (CVD) at baseline. Serum 25-hydroxyvitamin D (25(OH)D) levels were measured at baseline. Participants were followed-up from the survey date (2005-2012) until December 31, 2021. Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for mortality by baseline vitamin D level. Restricted cubic splines were used to explore the nonlinearity. RESULTS: The median (interquartile range) of 25(OH)D level was 55.8 (40.8-71.8) nmol/L. During a median follow-up of 14.3 years, 2250 deaths were recorded. Compared with participants with a 25(OH)D level <30 nmol/L, higher vitamin D levels (30 to < 50, 50 to < 75, and ≥75 nmol/L) were associated with a lower risk of all-cause mortality: HR (95% CI) of 0.82 (0.69-0.98), 0.74 (0.62-0.88), and 0.69 (0.57-0.84), respectively. A nonlinear relationship between vitamin D level and all-cause mortality was observed, with the risk plateauing between 50 and 60 nmol/L (p for nonlinearity = 0.009). The association was more pronounced for cancer-related mortality. HR 0.55 (95% CI: 0.39-0.77) for a 25(OH)D level ≥75 nmol/L compared with <30.0 nmol/L. Low vitamin D levels were associated with increased CVD mortality in men. CONCLUSIONS: Vitamin D level was inversely associated with all-cause and cause-specific mortality in middle-aged and older adults. Maintaining a serum 25(OH)D level of approximately 50-60 nmol/L may contribute to longevity and warrants further investigation.


Asunto(s)
Causas de Muerte , Vitamina D , Humanos , Vitamina D/sangre , Vitamina D/análogos & derivados , Masculino , Estudios Prospectivos , Femenino , Persona de Mediana Edad , Anciano , Adulto , Factores de Riesgo , República de Corea/epidemiología , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/mortalidad , Modelos de Riesgos Proporcionales
18.
Colloids Surf B Biointerfaces ; 243: 114140, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39111157

RESUMEN

Excessive local accumulation of reactive oxygen species (ROS) in vulvovaginal candidiasis (VVC) leads to oxidative stress and aggravates inflammation. This study aimed to optimize and synthesize four ROS-sensitive polyethylene glycol (PEG)-boride polymers (PB, PCB, BPB, and BCPCB). A nanomicelle (BCPCB-K) was constructed using BCPCB-encapsulated ketoconazole (KTZ). Finally, the depolymerization principle and ROS-sensitive drug release of BCPCB-K as well as its anti-Candida albicans (CA) and therapeutic effects on mice with VVC were explored through in vitro and in vivo experiments. BCPCB-K exhibited low toxicity to mammalian cells in vitro and good biocompatibility in vivo. It also improved the dispersion and solubility of the hydrophobic drug KTZ. Furthermore, BCPCB-K simultaneously scavenged ROS and released the drug, thus facilitating the antifungal and VVC-treating effects of KTZ. Overall, the findings of this study broadened the application of ROS-sensitive materials in the drug-loading and antifungal fields and provided a strategy for VVC treatment.


Asunto(s)
Antifúngicos , Candida albicans , Candidiasis Vulvovaginal , Cetoconazol , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno , Candida albicans/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Especies Reactivas de Oxígeno/metabolismo , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Cetoconazol/farmacología , Cetoconazol/administración & dosificación , Femenino , Animales , Ratones , Micelas , Nanopartículas/química , Humanos , Liberación de Fármacos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Tamaño de la Partícula
19.
ACS Appl Mater Interfaces ; 16(35): 45799-45808, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39163115

RESUMEN

Preparing high-quality perovskite films is a decisive step toward realizing highly efficient and stable perovskite solar cells (Pero-SCs). Water is a key factor affecting the stability of the Pero-SCs. Here, the widely used water adsorbents chitosan, sorbitol, and sodium hyaluronate (NaHA) were used as hydrophilic layers on the upper interface of the perovskite to form a barrier against water. The water adsorbents also passivated defects on the surface of the perovskite active layer due to their -OH and -COOH functional groups. The NaHA-modified devices showed the best power conversion efficiency (PCE) (PCE = 21.74%). Although the NaHA-modified Pero-SCs showed optimal photovoltaic performance, the stability of the modified devices decreased due to the strong water adsorption ability of NaHA, while with moderate water adsorption ability sorbitol-modified devices exhibited good stability and PCE. The devices were tested in the dark and room temperature at different humidity levels for 800 h. At low humidity (25% ± 5% RH), the PCEs of the sorbitol- and NaHA-modified devices were maintained at 80% and 71% of the initial values, respectively. At high humidity (75% ± 5% RH), the PCE was maintained at 64% and 23% of the initial values, respectively. This work provides an avenue to select adsorbents with suitable water absorption ability as the interface modification layer, thus reducing the water erosion of perovskite films and obtaining highly stable inverted Pero-SCs.

20.
Phys Rev Lett ; 133(7): 076502, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39213584

RESUMEN

We propose a novel type of skin effects in non-Hermitian quantum many-body systems that we dub a "non-Hermitian Mott skin effect." This phenomenon is induced by the interplay between strong correlations and the non-Hermitian point-gap topology. The Mott skin effect induces extreme sensitivity to the boundary conditions only in the spin degree of freedom (i.e., the charge distribution is not sensitive to boundary conditions), which is in sharp contrast to the ordinary non-Hermitian skin effect in noninteracting systems. Concretely, we elucidate that a bosonic non-Hermitian chain exhibits the Mott skin effect in the strongly correlated regime by closely examining an effective Hamiltonian. The emergence of the Mott skin effect is also supported by numerical diagonalization of the bosonic chain. The difference between the ordinary non-Hermitian skin effect and the Mott skin effect is also reflected in the time evolution of physical quantities; under the time evolution spin accumulation is observed while the charge distribution remains spatially uniform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA