Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Thromb Res ; 238: 172-183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723522

RESUMEN

INTRODUCTION: Cancer cells induce hypercoagulability in the tumoral microenvironment by expressing Tissue Factor (TF). We aimed to study the impact of the procoagulant signature of cancer cells on the quality and structure of fibrin network. We also studied the impact of fibrin clot shield (FCS) on the efficiency of anticancer agents and the migration of cancer cells. MATERIALS AND METHODS: Pancreatic cancer cells BXPC3 and breast cancer cells MDA-MB231 and MCF7, were cultured in the presence of normal Platelet Poor Plasma (PPP), diluted 10 % in conditioning media. Their potential to induce thrombin generation and their fibrinolytic activity were assessed. The structure of fibrin network was analyzed with Scanning Electron Microscopy (SEM). Cancer cells' mobility with fibrin clot and their interactions with fibrin were observed. Cancer cells were treated with paclitaxel (PTX) or 4-hydroxy-tamoxifen (4OHTam) in the presence or absence of FCS. RESULTS: Cancer cells, in presence of PPP, induced fibrin network formation. High TF-expressing cancer cells (BXPC3 and MDA-MB23 cells), led to dense fibrin network with fine fibers. Low TF expressing cells MCF7 led to thick fibers. Exogenous TF enhanced the density of fibrin network formed by MCF7 cells. Cancer cells through their inherent profibrinolytic potential migrated within the fiber scaffold. The BXPC3 and MCF7 cells moved in clusters whereas the MDA-MB231 cells moved individually within the fibrin network. FCS decreased the efficiency of PTX and 4OHTam on the viability of cancer cells. CONCLUSIONS: The procoagulant signature of cancer cells is determinant for the quality and structure of fibrin network in the microenvironment. Original SEM images show the architecture of "bird's nest"-like fibrin network being in touch with the cell membranes and surrounding cancer cells. Fibrin network constructed by triggering thrombin generation by cancer cells, provides a scaffold for cell migration. Fibrin clot shields protect cancer cells against PTX and 4OHTam.


Asunto(s)
Antineoplásicos , Movimiento Celular , Fibrina , Microambiente Tumoral , Humanos , Movimiento Celular/efectos de los fármacos , Fibrina/metabolismo , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Células MCF-7 , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Coagulación Sanguínea/efectos de los fármacos
2.
Bull Math Biol ; 86(3): 30, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347328

RESUMEN

One of the most crucial and lethal characteristics of solid tumors is represented by the increased ability of cancer cells to migrate and invade other organs during the so-called metastatic spread. This is allowed thanks to the production of matrix metalloproteinases (MMPs), enzymes capable of degrading a type of collagen abundant in the basal membrane separating the epithelial tissue from the connective one. In this work, we employ a synergistic experimental and mathematical modelling approach to explore the invasion process of tumor cells. A mathematical model composed of reaction-diffusion equations describing the evolution of the tumor cells density on a gelatin substrate, MMPs enzymes concentration and the degradation of the gelatin is proposed. This is completed with a calibration strategy. We perform a sensitivity analysis and explore a parameter estimation technique both on synthetic and experimental data in order to find the optimal parameters that describe the in vitro experiments. A comparison between numerical and experimental solutions ends the work.


Asunto(s)
Podosomas , Humanos , Podosomas/metabolismo , Podosomas/patología , Gelatina/metabolismo , Matriz Extracelular/patología , Modelos Biológicos , Conceptos Matemáticos , Metaloproteinasas de la Matriz/metabolismo , Invasividad Neoplásica/patología
3.
Food Chem Toxicol ; 185: 114454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237855

RESUMEN

Evidence suggests that meat processing and heat treatment may increase cancer risk through exposure to potentially carcinogenic compounds, polycyclic aromatic hydrocarbons (PAHs), and heterocyclic aromatic amines (HAAs). This study aims to investigate the effect of low concentrations of PAHs and HAAs (from 1 to 100 µmol/L/24h and 48h) in colorectal tumor cells (HT-29, HCT116, and LS174T) and to evaluate the effect of PAHs in the presence of inulin in mice. In vitro, the 4-PAHs have no effect on healthy colon cells but decreased the viability of the colorectal tumor cells and activated the mRNA and protein expressions of CYP1A1 and CYP1B1. In vivo, in mice with colitis induced by 3% DSS, the 4-PAHs (equimolar mix at 50,100, 150 mg/kg.bw, orally 3 times a week for 3 weeks) induced a loss of body weight and tumor formation. Inulin (10 g/L) had no effect on colon length and tumor formation. A significant decrease in the loss of b.w was observed in inulin group as compared to the fiber free group. These results underscore the importance of considering the biological association between low-dose exposure to 4-HAPs and diet-related colon tumors.


Asunto(s)
Neoplasias Colorrectales , Compuestos Heterocíclicos , Hidrocarburos Policíclicos Aromáticos , Animales , Ratones , Inulina/farmacología , Aminas/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Suplementos Dietéticos , Compuestos Heterocíclicos/toxicidad
4.
J R Soc Interface ; 21(210): 20230587, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38196375

RESUMEN

Glucose is a primary energy source for cancer cells. Several lines of evidence support the idea that monocarboxylate transporters, such as MCT1, elicit metabolic reprogramming of cancer cells in glucose-poor environments, allowing them to re-use lactate, a by-product of glucose metabolism, as an alternative energy source with serious consequences for disease progression. We employ a synergistic experimental and mathematical modelling approach to explore the evolutionary processes at the root of cancer cell adaptation to glucose deprivation, with particular focus on the mechanisms underlying the increase in MCT1 expression observed in glucose-deprived aggressive cancer cells. Data from in vitro experiments on breast cancer cells are used to inform and calibrate a mathematical model that comprises a partial integro-differential equation for the dynamics of a population of cancer cells structured by the level of MCT1 expression. Analytical and numerical results of this model suggest that environment-induced changes in MCT1 expression mediated by lactate-associated signalling pathways enable a prompt adaptive response of glucose-deprived cancer cells, while fluctuations in MCT1 expression due to epigenetic changes create the substrate for environmental selection to act upon, speeding up the selective sweep underlying cancer cell adaptation to glucose deprivation, and may constitute a long-term bet-hedging mechanism.


Asunto(s)
Neoplasias , Humanos , Evolución Biológica , Progresión de la Enfermedad , Glucosa , Ácido Láctico
5.
Chem Commun (Camb) ; 59(59): 9114-9117, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37403760

RESUMEN

We report a fluorescent monomer-free method for the synthesis of fluorescent and stable magnetic nanocomposites using a benzophenone/rhodamine B bimolecular photoinitiator system. The method allows the synthesis of a fluorescent polymer shell layer around magnetic nanoparticles in one step by UV irradiation at ambient temperature.

6.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108371

RESUMEN

Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.


Asunto(s)
Neoplasias de la Mama , Exosomas , Vesículas Extracelulares , Femenino , Humanos , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Sistemas de Liberación de Medicamentos , Biología , Microambiente Tumoral
7.
Macromol Rapid Commun ; 44(10): e2200966, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36912375

RESUMEN

A simple and cost-efficient method for fluorescent microsphere synthesis, which does not require any fluorescent monomers or modification steps to incorporate fluorescent moieties into the polymer particles, is reported. Using rhodamine B and benzophenone as bimolecular initiation system in type II photoinitiated precipitation polymerization, the method enables the preparation of fluorescent microspheres in one step, at room temperature and without the need for a stabilizer or surfactant of any type.


Asunto(s)
Polímeros , Estirenos , Tamaño de la Partícula , Colorantes , Microesferas
8.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36904354

RESUMEN

Molecularly imprinted polymers (MIPs) are really interesting for nanomedicine. To be suitable for such application, they need to be small, stable in aqueous media and sometimes fluorescent for bioimaging. We report herein, the facile synthesis of fluorescent, small (below 200 nm), water-soluble and water-stable MIP capable of specific and selective recognition of their target epitope (small part of a protein). To synthesize these materials, we used dithiocarbamate-based photoiniferter polymerization in water. The use of a rhodamine-based monomer makes the resulting polymers fluorescent. Isothermal titration calorimetry (ITC) is used to determine the affinity as well as the selectivity of the MIP for its imprinted epitope, according to the significant differences observed when comparing the binding enthalpy of the original epitope with that of other peptides. The toxicity of the nanoparticles is also tested in two breast cancer cell lines to show the possible use of these particle for future in vivo applications. The materials demonstrated a high specificity and selectivity for the imprinted epitope, with a Kd value comparable with the affinity values of antibodies. The synthesized MIP are not toxic, which makes them suitable for nanomedicine.

9.
Bioelectrochemistry ; 150: 108355, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36549173

RESUMEN

Irreversible electroporation (IRE) has been reported to variably cause apoptosis, necrosis, oncosis or pyroptosis. Intracellular ATP is a key substrate for apoptosis which is rapidly depleted during IRE, we sought to understand whether intracellular ATP levels is a determinant of the mode of cell death following IRE. A mouse bladder cancer cell line (MB49) was treated with electric fields while increasing the number of pulses at a fixed electric field strength, and pulse width. Cell proliferation and viability and ATP levels were measured at different timepoints post-treatment. Cell death was quantified with Annexin-V/Propidium Iodide staining. Caspase activity was measure with a fluorometric kit and western blotting. A pan-caspase (Z-VAD-FMK) inhibitor was used to assess the impact of signal inhibition. We found cell death following IRE was insensitive to caspase inhibition and was correlated with ATP loss. These findings were confirmed by cell death assays and measurement of changes in caspase expression on immunoblotting. This effect could not be rescued by ATP supplementation. Rapid and acute ATP loss during IRE interferes with caspase signaling, promoting necrosis. Cell necrosis from IRE is expected to be immunostimulatory and may be effective in cancer cells that carry mutated or defective apoptosis genes.


Asunto(s)
Apoptosis , Electroporación , Ratones , Animales , Necrosis , Muerte Celular , Caspasas/metabolismo , Adenosina Trifosfato , Caspasa 3/metabolismo , Caspasa 3/farmacología
10.
Clin Transl Oncol ; 25(5): 1389-1401, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36520383

RESUMEN

BACKGROUND: Adipose tissue is a major component of breast stroma. This study focused on delineating the effects of adipose stem cells (ASCs) derived from breast of healthy women and cancer patients with normal or tumor breast cells. METHODS: The ASCs were induced to differentiate into adipocytes, and the subsequent adipocyte conditioned media (ACM) were evaluated for their fatty acid profile, adipokine secretion and influence on proliferation, migration and invasion on tumoral (MCF-7 and SUM159) and normal (HMEC) human breast cell lines. RESULTS: An enrichment of arachidonic acid was observed in ACM from tumor tissues. Adipose tissues from tumor free secrete twice as much leptin than those from proximal or distal to the tumor. All ACMs display proliferative activity and favor invasiveness of SUM159 cells compared to MCF-7 and HMEC. All ACMs induced lipid droplets accumulation in MCF-7 cells and increased CD36 expression in tumor cells. CONCLUSION: We conclude that among secreted factors analyzed, only arachidonic acid and leptin levels did discriminate ASCs from tumor-bearing and tumor-free breasts emphasizing the importance that other cell types could contribute to the adipose tissue secretome in a tumor context.


Asunto(s)
Neoplasias de la Mama , Leptina , Femenino , Humanos , Leptina/metabolismo , Leptina/farmacología , Ácido Araquidónico/metabolismo , Ácido Araquidónico/farmacología , Neoplasias de la Mama/patología , Secretoma , Adipocitos/metabolismo , Adipocitos/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Células MCF-7 , Proliferación Celular , Medios de Cultivo Condicionados/farmacología , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA