RESUMEN
PURPOSE: Biallelic INPP4A variants have recently been associated with severe neurodevelopmental disease in single case reports. Here, we expand and elucidate the clinical-genetic spectrum and provide a pathomechanistic explanation for genotype-phenotype correlations. METHODS: Clinical and genomic investigations of 30 individuals were undertaken alongside molecular and in silico modelling and translation reinitiation studies. RESULTS: We characterize a clinically variable disorder with cardinal features including global developmental delay, severe-profound intellectual disability, microcephaly, limb weakness, cerebellar signs and short stature. A more severe presentation associated with biallelic INPP4A variants downstream of exon 4 has additional features of (ponto)cerebellar hypoplasia, reduced cerebral volume, peripheral spasticity, contractures, intractable seizures and cortical visual impairment. Our studies identify the likely pathomechanism of this genotype-phenotype correlation entailing translational reinitiation in exon 4 resulting in an N-terminal truncated INPP4A protein retaining partial functionality, associated with less severe disease. We also identified identical reinitiation site conservation in Inpp4a-/- mouse models displaying similar genotype-phenotype correlation. Additionally, we show fibroblasts from a single affected individual exhibit disrupted endocytic trafficking pathways, indicating the potential biological basis of the condition. CONCLUSION: Our studies comprehensively characterise INPP4A-related neurodevelopmental disorder and suggest genotype-specific clinical assessment guidelines. We propose the potential mechanistic basis of observed genotype-phenotype correlations entails exon 4 translation reinitiation.
RESUMEN
INTRODUCTION: Prostate cancer (PCa) is one of the most common cancers worldwide. PCa diagnosis is mostly based on solid biopsy and prostate-specific antigen (PSA), which have the disadvantages of being invasive and insensitive, respectively. Recently, the detection of microRNAs (miRNAs) in expressed prostatic secretions (EPS) has been a promising approach for PCa diagnosis. The aim of this study is to quantify transcriptional levels of miRNA-32 in the urine of prostate cancer patients. MATERIALS AND METHODS: In this study, we evaluated the expression of miRNA-32 in the urine of 27 PCa patients, 48 benign prostatic hyperplasia (BPH) and 20 healthy controls, using quantitative real-time PCR (qPCR). The expression levels were then compared with the clinicopathological characteristics of patients. RESULTS: The expression level of miRNA-32 in PCa patients was significantly higher than the control group (P < .01) and BPH cases (P < .01), and was associated with advanced tumor stage (P < .05). In addition, the expression of miRNA-32 had significant correlation with patients' age (r = 0.39, P = .043). Area under ROC curve (AUC) for the discrimination of PCa samples from control and BPH samples were 0.93 (P < .0001) and 0.78 (P < .0001), respectively. We also used logistic regression analysis to integrate the results of PSA, prostate volume and miRNA-32, and presented a predictive model for distinguishing PCa from BPH, highlighting the clinical utility of miRNA-32 in cancer diagnosis and risk assessment. CONCLUSIONS: Measurement of miRNA-32 expression in urine may have significance for the detection of PCa. Inclusion of miRNA-32 in logistic regression along with PSA and prostate volume increases the accuracy of cancer diagnosis.
RESUMEN
BACKGROUND: Biallelic ZBTB11 variants have previously been associated with an ultrarare subtype of autosomal recessive intellectual developmental disorder (MRT69). OBJECTIVE: The aim was to provide insights into the clinical and genetic characteristics of ZBTB11-related disorders (ZBTB11-RD), with a particular emphasis on progressive complex movement abnormalities. METHODS: Thirteen new and 16 previously reported affected individuals, ranging in age from 2 to 50 years, with biallelic ZBTB11 variants underwent clinical and genetic characterization. RESULTS: All patients exhibited a range of neurodevelopmental phenotypes with varying severity, encompassing ocular and neurological features. Eleven new patients presented with complex abnormal movements, including ataxia, dystonia, myoclonus, stereotypies, and tremor, and 7 new patients exhibited cataracts. Deep brain stimulation was successful in treating 1 patient with generalized progressive dystonia. Our analysis revealed 13 novel variants. CONCLUSIONS: This study provides additional insights into the clinical features and spectrum of ZBTB11-RD, highlighting the progressive nature of movement abnormalities in the background of neurodevelopmental phenotype.
Asunto(s)
Trastornos del Movimiento , Humanos , Masculino , Femenino , Niño , Trastornos del Movimiento/genética , Adolescente , Adulto , Preescolar , Persona de Mediana Edad , Adulto Joven , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas Represoras/genéticaRESUMEN
BACKGROUND: Infertility is defined as the failure to achieve pregnancy after one year of unprotected intercourse within a marital relationship. Approximately 10%-15% of couples worldwide experience infertility issues, with nearly half of these cases attributed to male factors. Among men with unexplained infertility, genetic mutations have been identified as a potential cause. Studies have indicated that mutations affecting the function of the protein encoded by the ACTL9 gene may play a role in male infertility. METHODS: The purpose of this research was to identify mutations in the ACTL9 gene associated with male infertility in a sample of 40 infertile men with unknown causes. Genomic DNA extraction and PCR amplification were carried out on samples from each individual. The genetic material was then analyzed using Sanger sequencing, followed by bioinformatics and segregation analysis to determine the potential effects of the observed variations. RESULT: A novel genetic variant, c.376G>A (p.Glu126Lys), was identified in an infertile male individual, representing a previously unreported finding that was validated through segregation analyses. This specific variant induces a change from glutamate to lysine at the amino acid level by replacing the nucleotide G with A in the genomic DNA sequence, consequently impacting the secondary structure and function of the protein. CONCLUSIONS: The conclusive analysis of the procedure indicated that this alteration has the potential to interfere with the process of fertilization, ultimately resulting in the complete failure of fertilization (TFF) and causing male infertility.
Asunto(s)
Infertilidad Masculina , Humanos , Masculino , Infertilidad Masculina/genética , Adulto , MutaciónRESUMEN
BACKGROUND: There are four distinct forms of Sanfilippo syndrome (MPS type III), each of which is an autosomal lysosomal storage disorder. These forms are caused by abnormalities in one of four lysosomal enzymes. This study aimed to identify possible genetic variants that contribute to Sanfilippo IIIB in 14 independent families in Southwest Iran. METHODS: Patients were included if their clinical features and enzyme assay results were suggestive. The patients were subsequently subjected to Sanger Sequencing to screen for Sanfilippo-related genes. Additional investigations have been conducted using various computational analyses to determine the probable functional effects of diagnosed variants. RESULTS: Five distinct variations were identified in the NAGLU gene. This included two novel variants in two distinct families and three previously reported variants in 12 distinct families. All of these variations were recognized as pathogenic using the MutationTaster web server. In silico analysis showed that all detected variants affected protein structural stability; four destabilized protein structures, and the fifth variation had the opposite effect. CONCLUSION: In this study, two novel variations in the NAGLU gene were identified. The results of this study positively contribute to the mutation diversity of the NAGLU gene. To identify new disease biomarkers and therapeutic targets, precision medicine must precisely characterize and account for genetic variations. New harmful gene variants are valuable for updating gene databases concerning Sanfilippo disease variations and NGS gene panels. This may also improve genetic counselling for rapid risk examinations and disease surveillance.
Asunto(s)
Mucopolisacaridosis III , Humanos , Mucopolisacaridosis III/genética , Acetilglucosaminidasa/genética , Mutación , Hidrolasas/genética , Asesoramiento GenéticoRESUMEN
Introduction: Mucopolysaccharidoses are a group of lysosomal storage disorders that include seven types that are classified based on the enzymes that are disrupted. Malfunction of these enzymes leads to the accumulation of glycosaminoglycans (GAGs) in various tissues. Due to genetic and clinical heterogeneity, diagnosing and distinguishing the different types is challenging. Genetic methods such as whole exome sequencing (WES) and Sanger sequencing are accurate methods for detecting pathogenic variants in patients. Methods: Thirty-two cases of mucopolysaccharidosis, predominantly from families with consanguineous marriages, were genetically examined. Out of these, fourteen cases underwent targeted sequencing, while the rest underwent WES. The results of WES were analyzed and the pathogenicity of the variants was examined using bioinformatics tools. In addition, a segregation analysis within families was carried out. Results: In most cases, a pathogenic or likely pathogenic variant was detected. Sixteen previously reported variants and six new variants were detected in the known IDS (c.458G>C, c.701del, c.920T>G), GNS (c.1430A>T), GALNS (c.1218_1221dup), and SGSH (c.149T>C) genes. Furthermore, we discovered a c.259G>C substitution in the NAGLU gene for the first time in three homozygous patients. This substitution was previously reported as heterozygous. Except for the variants related to the IDS gene, which were hemizygous, all the other variants were homozygous. Discussion: It appears that the high rate of consanguineous marriages in the families being studied has had a significant impact on the occurrence of this disease. Overall, these findings could expand the spectrum of pathogenic variants in mucopolysaccharidoses. Genetic methods, especially WES, are very accurate and can be used alone or in conjunction with other diagnostic methods for a more precise and rapid diagnosis of mucopolysaccharidoses. Additionally, they could be beneficial for family screening and disease prevention.
RESUMEN
BACKGROUND: Hyperphenylalaninemia (HPA) is a metabolic disorder classified into phenylalanine-4-hydroxylase (PAH) and non-PAH deficiency. The latter is produced by mutations in genes involved in the tetrahydrobiopterin (BH4) biosynthesis pathway and DNAJC12 pathogenetic variants. The BH4 metabolism, including de novo biosynthesis involved genes (i.e., guanosine 5'-triphosphate cyclohydrolase I (GTPCH/GCH1), sepiapterin reductase (SR/SPR), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS)), and two genes that play roles in cofactor regeneration pathway (i.e., dihydropteridine reductase (DHPR/QDPR) and pterin-4α-carbinolamine dehydratase (PCD/PCBD1)). The subsequent systemic hyperphenylalaninemia and monoamine neurotransmitter deficiency lead to neurological consequences. The high rate of consanguineous marriages in Iran substantially increases the incidence of BH4 deficiency. METHODS: We utilized the Sanger sequencing technique in this study to investigate 14 Iranian patients with non-PAH deficiency. All affected subjects in this study had HPA and no mutation was detected in their PAH gene. RESULTS: We successfully identified six mutant alleles in BH4-deficiency-associated genes, including three novel mutations: one in QDPR, one in PTS, and one in the PCBD1 gene, thus giving a definite diagnosis to these patients. CONCLUSION: In this light, appropriate patient management may follow. The clinical effect of reported variants is essential for genetic counseling and prenatal diagnosis in the patients' families and significant for the improvement of precision medicine.
Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Embarazo , Femenino , Humanos , Irán , Fenilcetonurias/genética , Fenilcetonurias/epidemiología , Biopterinas , Dihidropteridina Reductasa/genética , Fenilalanina Hidroxilasa/genéticaRESUMEN
MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.
Asunto(s)
Catarata , Epilepsia Generalizada , Epilepsia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Femenino , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Epilepsia/genética , Cerebelo/patología , Trastornos del Neurodesarrollo/genética , Epilepsia Generalizada/patología , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/genética , Atrofia/patología , Catarata/genética , Catarata/patología , Fenotipo , Complejo Mediador/genéticaRESUMEN
OBJECTIVE: The embryo implantation includes a complex sequence of signaling events, comprising numerous molecular mediators, such as ovarian hormones, cytokines, adhesion molecules and, growth factors. One of the critical factors in angiogenesis is the vascular endothelial growth factor (VEGF). The VEGF plays a pivotal role in embryonic development, decidua vascularization and placental angiogenesis. Furthermore, the P53 gene and its negative regulator, murine double minute 2 (MDM2), are major players in reproductive processes. This study aimed to assess the association of polymorphisms of the VEGF and the MDM2 genes with idiopathic recurrent implantation failure. METHODS: We genotyped 60 women with previous idiopathic recurrent implantation failures and 60 fertile women as controls. Restriction Fragment Length Polymorphism (RFLP) and Sanger sequencing were used for genotyping the rs2010963 and the rs1570360 polymorphisms in VEGF; and the rs2279744 in MDM2 genes. RESULTS: Results indicated a higher frequency of the VEGF rs1570360 AA genotype and A allele in patients with a history of idiopathic implantation failure [OR=6.4 (1.22 - 33.64), p-value=0.02)]. However, the frequency of VEGF +405 G/C and MDM2 SNP309 T/G [(OR=3 (0.5 - 16) p-value=0.2, OR=1.18 (0.3 - 3.7) p-value=0.7, respectively)] genotypes were not significantly different between cases and controls. CONCLUSIONS: The VEGF polymorphism may influence embryo implantation and the VEGF rs1570360 AA genotype may predispose to the risk of recurrent implantation failure after IVF.
Asunto(s)
Placenta , Factor A de Crecimiento Endotelial Vascular , Animales , Femenino , Humanos , Ratones , Embarazo , Estudios de Casos y Controles , Irán , Polimorfismo Genético , Proteínas Proto-Oncogénicas c-mdm2/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
BACKGROUND: Congenital disorder of glycosylation (CDG) and Glycogen storage diseases (GSDs) are inborn metabolic disorders caused by defects in some metabolic pathways. These disorders are a heterogeneous group of diseases caused by impaired O- as well as N-glycosylation pathways. CDG patients show a broad spectrum of clinical presentations; many GSD types (PGM1-CDG) have muscle involvement and hypoglycemia. METHODS: We applied WES for all seven patients presenting GSD and CDG symptoms. Then we analyzed the data using various tools to predict pathogenic variants in genes related to the patients' diseases. RESULTS: In the present study, we identified pathogenic variants in Iranian patients suffering from GSD and CDG, which can be helpful for patient management, and family counseling. We detected seven pathogenic variants using whole exome sequencing (WES) in known AGL (c.1998A>G, c.3635T>C, c.3682C>T), PGM1 (c.779G>A), DPM1 (c.742T>C), RFT1 (c.127A>G), and GAA (c.1314C>A) genes. CONCLUSION: The suspected clinical diagnosis of CDG and GSD patients was confirmed by identifying missense and or nonsense mutations in PGM1, DPM1, RFT1, GAA, and AGL genes by WES of all 7 cases. This study helps us understand the scenario of the disorder causes and consider the variants for quick disease diagnosis.
Asunto(s)
Trastornos Congénitos de Glicosilación , Enfermedad del Almacenamiento de Glucógeno , Humanos , Irán , Trastornos Congénitos de Glicosilación/genética , Mutación , Glicosilación , Secuenciación del Exoma , Enfermedad del Almacenamiento de Glucógeno/genéticaRESUMEN
BACKGROUND: We used a hybrid machine learning systems (HMLS) strategy that includes the extensive search for the discovery of the most optimal HMLSs, including feature selection algorithms, a feature extraction algorithm, and classifiers for diagnosing breast cancer. Hence, this study aims to obtain a high-importance transcriptome profile linked with classification procedures that can facilitate the early detection of breast cancer. METHODS: In the present study, 762 breast cancer patients and 138 solid tissue normal subjects were included. Three groups of machine learning (ML) algorithms were employed: (i) four feature selection procedures are employed and compared to select the most valuable feature: (1) ANOVA; (2) Mutual Information; (3) Extra Trees Classifier; and (4) Logistic Regression (LGR), (ii) a feature extraction algorithm (Principal Component Analysis), iii) we utilized 13 classification algorithms accompanied with automated ML hyperparameter tuning, including (1) LGR; (2) Support Vector Machine; (3) Bagging; (4) Gaussian Naive Bayes; (5) Decision Tree; (6) Gradient Boosting Decision Tree; (7) K Nearest Neighborhood; (8) Bernoulli Naive Bayes; (9) Random Forest; (10) AdaBoost, (11) ExtraTrees; (12) Linear Discriminant Analysis; and (13) Multilayer Perceptron (MLP). For evaluating the proposed models' performance, balance accuracy and area under the curve (AUC) were used. RESULTS: Feature selection procedure LGR + MLP classifier achieved the highest prediction accuracy and AUC (balanced accuracy: 0.86, AUC = 0.94), followed by an LGR + LGR classifier (balanced accuracy: 0.84, AUC = 0.94). The results showed that achieved AUC for the LGR + LGR classifier belonged to the 20 biomarkers as follows: TMEM212, SNORD115-13, ATP1A4, FRG2, CFHR4, ZCCHC13, FLJ46361, LY6G6E, ZNF323, KRT28, KRT25, LPPR5, C10orf99, PRKACG, SULT2A1, GRIN2C, EN2, GBA2, CUX2, and SNORA66. CONCLUSIONS: The best performance was achieved using the LGR feature selection procedure and MLP classifier. Results show that the 20 biomarkers had the highest score or ranking in breast cancer detection.
Asunto(s)
Neoplasias de la Mama , Algoritmos , Teorema de Bayes , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Detección Precoz del Cáncer , Femenino , Perfilación de la Expresión Génica , Humanos , Aprendizaje Automático , Máquina de Vectores de SoporteRESUMEN
In this study, we describe a new missense variant on the ß-globin gene in a heterozygous form in a female individual. Standard methods were used to determine red blood cell indices and perform hemoglobin analyses. Molecular studies were performed on the genomic DNA isolated from peripheral blood cells. Beta-globin genes were amplified and sequenced. We report a novel mutation on the ß-globin gene (HBB), c.134 C>T; p.S44F variant, in the heterozygote state which was detected in a female of Persian ethnic origin in the Khuzestan province, southern Iran, that we named Hb Narges Lab (HbNL) variant. This mutation was predicted to be disease-causing in all except one in silico prediction tools. This variant was reported for the first time worldwide, had no shown hematological abnormalities but should be considered when inherited in the compound heterozygous form with ß- thalassemia (ß0-thal) carrier, which might result in the phenotype of thalassemia intermedia.
Asunto(s)
Globinas beta , Talasemia beta , Femenino , Hemoglobinas , Heterocigoto , Humanos , Mutación , Fenotipo , Globinas beta/genética , Talasemia beta/genéticaRESUMEN
Background and Aims: Sulfonylureas are the most secondary prescribed oral anti-diabetic drug. Understanding its genetic role in pharmacodynamics can elucidate a considerable knowledge about personalized treatment in type 2 diabetes patients. This study aimed to assess the impact of KCNQ1 variants on sulfonylureas response among type 2 diabetes Iranian patients. Methods and Results: 100 patients were recruited who were under sulfonylureas therapy for six months. 50 responder and 50 non-responder patients were selected. KCNQ1 variants were determined by the RFLP method, and their role in treatment response was assessed retrospectively. Patients with rs2237895 CC and AC genotypes demonstrated a significant decrement in FBS and HbA1c after treatment over patients with AA genotypes (All P < 0.001). Compared to the A allele, the odds ratio for treatment success between carriers with rs2237895 C allele was 4.22-fold (P < 0.001). Patients with rs2237892 CT heterozygous genotype exhibit a higher reduction rate in HbA1c and FBS than CC homozygotes (P=0.064 and P=0.079, respectively). The rs2237892 T allele carriers showed an odds ratio equals to 2.83-fold over C allele carriers in the responder group compared to the non-responder group (p=0.081). Conclusion: Findings suggest that the KCNQ1 rs2237895 polymorphism is associated with the sulfonylureas response on Iranian type 2 diabetes patients.
RESUMEN
We studied the alpha-globin gene genotypes, hematologic values, and transfusion-dependence of patients with Hb H disease. Molecular characterization of alpha-thalassemia was performed. We identified 120 patients with Hb H disease. Of these patients, 35 (29.16%) had deletional form of Hb H disease, and 85 (70.83%) had different form of non-deletional Hb H disease. The most frequently observed Hb H genotypes were --Med/-α3.7 in 33 patients (27.5%), αCD19(-G) α/αCD19(-G) α in 25 cases (20.83%), αpolyA2α/αpolyA2α in 15 (12.5%), and αpolyA1α/αpolyA1α in 13 (10.83%) respectively. The probability of receiving at least one transfusion blood in deletional form was observed in 3 of 35 (8.57%) patients which just seen in 3 of 33 (9%) patients with --Med/-α3.7 genotype. This form was also observed in 8 of 85 (9.4%) patients in non-deletional Hb H diseases which five of them had Med deletion in compound with alpha globin point mutations. Nondeletional Hb H disease was more severe than deletional Hb H disease requiring more blood transfusions. We can recommend that Med deletion in compound with alpha-globin point mutations, polyA1 and constant spring in homozygous form needs to be taken into consideration when offering counseling to high-risk couples.
Asunto(s)
Globinas alfa , Talasemia alfa , Estudios de Asociación Genética , Genotipo , Humanos , Irán/epidemiología , Mutación , Globinas alfa/genética , Talasemia alfa/epidemiología , Talasemia alfa/genéticaRESUMEN
Parkinson's disease (PD) is known as one of the most common degenerative disorders related to the damage of the central nervous system (CNS). This brain disorder is also characterized by the formation of Lewy bodies in the cytoplasm of the dopaminergic neurons in the substantia nigra pars compacta (SNc), which consequently leads to motor and non-motor symptoms. With regard to the growing trend in the number of cases with PD and its effects on individuals, families, and communities, immediate treatments together with diagnostic methods are required. In this respect, long non-coding ribonucleic acids (lncRNAs) represent a large class of ncRNAs with more than 200 nucleotides in length, playing key roles in some important processes including gene expression, cell differentiation, genomic imprinting, apoptosis, and cell cycle. They are highly expressed in the CNS and previous studies have further reported that the expression profile of lncRNAs is disrupted in human diseases such as neurodegenerative disorders. Since the levels of some lncRNAs change over time in the brains of patients with PD, a number of previous studies have examined their potentials as biomarkers for this brain disorder. Therefore, the main purpose of this study was to review the advances in the related literature on lncRNAs as diagnostic, therapeutic, and prognostic biomarkers for PD.
Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , ARN Largo no Codificante , Biomarcadores , Neuronas Dopaminérgicas , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , ARN Largo no Codificante/genéticaAsunto(s)
Exoma , Enfermedades Renales , Exoma/genética , Humanos , Irán , Enfermedades Renales/diagnóstico , Secuenciación del ExomaRESUMEN
The genotype and phenotype correlation between coinheritance of heterozygous beta-thalassemia with the alpha-globin triplication is unclear. In this study we have investigated and reviewed alpha triplication frequency in beta-thalassemia carriers, sickle cell trait, and healthy individuals and its effect on hematological and phenotypical changes. In this study, 4005 beta-thalassemia carriers, 455 sickle cell trait, and 2000 healthy individuals were included. Molecular characterization of beta and alpha-thalassemia was performed. The frequencies of alpha-globin triplication in beta-thalassemia carriers, sickle cell trait, and healthy individuals were 67 (1.67%), 4 (0.88%), and 18 (0.9%), respectively. In total, the frequency of alpha-triplications is approximately 89 (1.39%) in Khuzestan province, South of Iran population. We have compared the average hematological parameters of beta-thalassemia carriers, sickle cell trait, and healthy individuals with and without alpha gene triplication. This mutation did not show any significant effect on the change of blood indices, neither in healthy individuals nor in sickle cell trait and beta-thalassemia carriers. Therefore, there is no need to take more notice of anti 3.7 mutation in beta-thalassemia carriers is opposed with some studies reported that the presence of excess alpha-globin genes in beta-thalassemia carriers can lead to the phenotype of beta-thalassemia intermedia. Therefore, not every individual with triplicated alpha globin coinherited with beta-thalassemia trait will have a significantly lower Hb than normal, and it is highly likely that none of them will need transfusion.
RESUMEN
BACKGROUND: X-linked chronic granulomatous disease (X-CGD) is an immunodeficiency disorder caused by defects in the gp91phox subunit that leads to life-threatening infections. We aimed to identify CYBB gene mutations and study clinical phenotypes in Iranian patients with probable X-CGD. METHODS: We studied four unrelated Iranian patients with probable X-CGD and their families recruited in several years. We isolated genomic DNA from whole blood and performed Sanger sequencing in the CYBB gene's coding and flanking regions. We also performed pathogenicity predictions using in silico tools. RESULTS: We detected four different mutations, including a novel insertion mutation in exon 5 (p.Ile117AsnfsX6), in the patient. Bioinformatics analysis confirmed the pathogenic effect of this mutation. We predicted protein modeling and demonstrated lost functional domains. The patient with the insertion mutation presented pneumonia and acute sinusitis during his life. We also detected three other known nonsense mutations (p.Arg157Ter, p.Arg226Ter, and p.Trp424Ter) in the CYBB gene. The patient with p.Arg157Ter developed lymphadenitis and pneumonia. Moreover, the patient with inflammatory bowel disease showed p.Arg226Ter and the patient with tuberculosis presented p.Trp424Ter. We detected different clinical features in the patients compared to other Iranian patients with the same mutations. CONCLUSION: Our results expand the genetic database of patients with X-CGD from Iran and make it much easier and faster to identify patients with X-CGD. Our results also help to detect carriers and enable prenatal diagnosis in high-risk families as a cost-effective strategy.
Asunto(s)
Enfermedad Granulomatosa Crónica/etiología , Mutación , NADPH Oxidasa 2/genética , Preescolar , Exones , Femenino , Enfermedad Granulomatosa Crónica/genética , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/genética , Irán , Masculino , Linaje , Neumonía/etiología , Neumonía/genéticaRESUMEN
BACKGROUND: Various blood diseases are caused by mutations in the FANCA, FANCC, and ITGA2B genes. Exome sequencing is a suitable method for identifying single-gene disease and genetic heterogeneity complaints. METHODS: Among families who were referred to Narges Genetic and PND Laboratory in 2015-2017, five families with a history of blood diseases were analyzed using the whole exome sequencing (WES) method. RESULTS: We detected two novel mutations (c.190-2A>G and c.2840C>G) in the FANCA gene, c. 1429dupA mutation in the FANCC gene, and c.1392A>G mutation in the ITGA2B gene. The prediction of variant pathogenicity has been done using bioinformatics tools such as Mutation taster PhD-SNP and polyphen2 and were confirmed by Sanger sequencing. CONCLUSIONS: WES could be as a precise tool for identifying the pathologic variants in affected patient and heterozygous carriers among families. This highly successful technique will remain at the forefront of platelet and blood genomic research.
RESUMEN
Mutations or altered expression of PRM1 gene have been associated with male infertility. This study aimed to analyse pathogenic variations of PRM1 gene in Iranian Arab infertile men with oligoasthenoteratozoospermia that was carried out for the first time in this population. Genomic DNA was used to perform PCR sequencing in PRM1 untranslated regions, exons and intron. Also, bioinformatics analysis was recruited to discover the possible effect of detected variations. Two pathogenic variations were seen in two men with oligoasthenoteratozoospermia, which were not found in the control group. The cDNA.384G>C variation is novel and was located in the 3' untranslated region, and cDNA.42G>A variation is reported for the first time related to male infertility and was found in 5' untranslated regions. Bioinformatics analysis showed that the minimum free energy was increased from -19.9kcal/mol to -13.1kcal/mol due to the cDNA.384G>C variation at hsa-miR-4326's seed site. More analysis revealed cDNA.42G>A located in transcription factors binding site, E1 and MYOD, which was detected as a promoter-associated region, and generally have regulatory features for acetylation and methylation. In conclusion, two pathogenic variations were recognised in regulatory areas of PRM1 gene, which might interfere with some critical factors related to PRM1 gene expression, hence cause male infertility.