RESUMEN
OBJECTIVES: The G72 mouse model of schizophrenia represents a well-known model that was generated to meet the main translational criteria of isomorphism, homology and predictability of schizophrenia to a maximum extent. In order to get a more detailed view of the complex etiopathogenesis of schizophrenia, whole genome transcriptome studies turn out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex, hippocampus and thalamus of G72 transgenic and wild-type control mice. Experimental animals were age-matched and importantly, both sexes were considered separately. DATA DESCRIPTION: The isolated RNA from all three brain regions was purified, quantified und quality controlled before initiation of the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8 × 60 K microarrays. Following immunofluorescent measurement und preprocessing of image data, raw transcriptome data from G72 mice and control animals were extracted and uploaded in a public database. Our data allow insight into significant alterations in gene transcript levels in G72 mice and enable the reader/user to perform further complex analyses to identify potential age-, sex- and brain-region-specific alterations in transcription profiles and related pathways. The latter could facilitate biomarker identification and drug research and development in schizophrenia research.
Asunto(s)
Corteza Cerebral , Modelos Animales de Enfermedad , Hipocampo , Esquizofrenia , Tálamo , Transcriptoma , Animales , Esquizofrenia/genética , Esquizofrenia/metabolismo , Hipocampo/metabolismo , Masculino , Femenino , Ratones , Transcriptoma/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Tálamo/metabolismo , Ratones Transgénicos , Perfilación de la Expresión Génica/métodos , Factores SexualesRESUMEN
A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Masculino , Femenino , Animales , Enfermedad de Alzheimer/patología , Transcriptoma , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratones Transgénicos , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Péptidos beta-Amiloides/metabolismoRESUMEN
The Kv11.1 potassium channel encoded by the Kcnh2 gene is crucial in conducting the rapid delayed rectifier K+ current in cardiomyocytes. Homozygous mutation in Kcnh2 is embryonically lethal in humans and mice. However, the molecular signaling pathway of intrauterine fetal loss is unclear. The present study generated a Kcnh2 knockout rat based on edited rat embryonic stem cells (rESCs). Kcnh2 knockout was embryonic lethal on day 11.5 of development due to a heart configuration defect. Experiments with human embryonic heart single cells (6.57 weeks postconception) suggested that potassium voltagegated channel subfamily H member 2 (KCNH2) plays a crucial role in the development of compact cardiomyocytes. By contrast, apoptosis was found to be triggered in the homozygous embryos, which could be attributed to the failure of KCNH2 to form a complex with integrin ß1 that was essential for preventing the process of apoptosis via inhibition of forkhead box O3A. Destruction of the KCNH2/integrin ß1 complex reduced the phosphorylation level of AKT and deactivated the glycogen synthase kinase 3 ß (GSK3ß)/ßcatenin pathway, which caused early developmental abnormalities in rats. The present work reveals a basic mechanism by which KCNH2 maintains intact embryonic heart development.
Asunto(s)
Canal de Potasio ERG1 , Cardiopatías Congénitas , Animales , Femenino , Humanos , Ratones , Embarazo , Ratas , Desarrollo Embrionario , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Cardiopatías Congénitas/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Miocitos Cardíacos/metabolismoRESUMEN
Parabens have been used for decades as preservatives in food, drugs and cosmetics. The majority however, were banned in 2009 and 2014 leaving only methyl-, ethyl-, propyl-, and butyl-derivates available for subsequent use. Methyl- and propylparaben have been extensively tested in vivo, with no resulting evidence for developmental and reproductive toxicity (DART). In contrast, ethylparaben has not yet been tested for DART in animal experiments, and it is currently debated if additional animal studies are warranted. In order to perform a comparison of the four currently approved parabens, we used a previously established in vitro test based on human induced pluripotent stem cells (iPSC) that are exposed to test substances during their differentiation to neuroectodermal cells. EC50 values for cytotoxicity were 906 µM, 698 µM, 216 µM and 63 µM for methyl-, ethyl-, propyl- and butylparaben, respectively, demonstrating that cytotoxicity increases with increasing alkyl chain length. Genome-wide analysis demonstrated that FDR-adjusted significant gene expression changes occurred only at cytotoxic or close to cytotoxic concentrations, for example 1720 differentially expressed genes (DEG) at 1000 µM ethylparaben, 1 DEG at 316 µM, and no DEG at 100 µM or lower concentrations. The highest concentration of ethylparaben that did not induce any cytotoxicity nor DEG was 1670-fold above the highest concentration reported in biomonitoring studies (60 nM ethylparaben in cord blood). In conclusion, cytotoxicity and gene expression alterations of ethylparaben occurred at concentrations of approximately three orders of magnitude above human blood concentrations; moreover, the substance fitted well into a scenario where toxicity increases with the alkyl chain length, and gene expression changes only occur at cytotoxic or close to cytotoxic concentrations. Therefore, no evidence was obtained suggesting that in vivo DART with ethylparaben would lead to different results as the methyl- or propyl derivates.
RESUMEN
Cardiotoxicity is a major complication of anthracycline therapy that negatively impacts prognosis. Effective pharmacotherapies for prevention of anthracycline-induced cardiomyopathy (AICM) are currently lacking. Increased plasma levels of the neutrophil-derived enzyme myeloperoxidase (MPO) predict occurrence of AICM in humans. We hypothesized that MPO release causally contributes to AICM. Mice intravenously injected with the anthracycline doxorubicin (DOX) exhibited higher neutrophil counts and MPO levels in the circulation and cardiac tissue compared to saline (NaCl)-treated controls. Neutrophil-like HL-60 cells exhibited increased MPO release upon exposition to DOX. DOX induced extensive nitrosative stress in cardiac tissue alongside with increased carbonylation of sarcomeric proteins in wildtype but not in Mpo-/- mice. Accordingly, co-treatment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with DOX and MPO aggravated loss of hiPSC-CM-contractility compared to DOX treatment alone. DOX-treated animals exhibited pronounced cardiac apoptosis and inflammation, which was attenuated in MPO-deficient animals. Finally, genetic MPO deficiency and pharmacological MPO inhibition protected mice from the development of AICM. The anticancer efficacy of DOX was unaffected by MPO deficiency. Herein we identify MPO as a critical mediator of AICM. We demonstrate that DOX induces cardiac neutrophil infiltration and release of MPO, which directly impairs cardiac contractility through promoting oxidation of sarcomeric proteins, cardiac inflammation and cardiomyocyte apoptosis. MPO thus emerges as a promising pharmacological target for prevention of AICM.
Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Peroxidasa , Animales , Humanos , Ratones , Antraciclinas/toxicidad , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Doxorrubicina/toxicidad , Inflamación , Peroxidasa/genéticaRESUMEN
A variety of Alzheimer disease (AD) mouse models has been established and characterized within the last decades. These models are generated to meet the principal criteria of AD isomorphism, homology and predictability to a maximum extent. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome data analysis turns out to be indispensable. Here, we present a microarray-based transcriptome data collection based on RNA extracted from the retrosplenial (RS) cortex and the hippocampus of APP/PS1 AD mice and control animals. Experimental animals were age matched and importantly, both sexes were considered separately. Isolated RNA was purified, quantified und quality controlled prior to the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8 × 60K microarrays. Following immunofluorescent measurement und preprocessing/extraction of image data, raw transcriptome data were uploaded including differentially expressed gene candidates and related fold changes in APP/PS1 AD mice and controls. Our data allow further insight into alterations in gene transcript levels in APP/PS1 AD mice compared to controls and enable the reader/user to carry out complex transcriptome analysis to characterize potential age-, sex- and brain-region-specific alterations in e.g., neuroinflammatory, immunological, neurodegenerative and ion channel pathways.
RESUMEN
Animal studies for embryotoxicity evaluation of potential therapeutics and environmental factors are complex, costly, and time-consuming. Often, studies are not of human relevance because of species differences. In the present study, we recapitulated the process of cardiomyogenesis in human induced pluripotent stem cells (hiPSCs) by modulation of the Wnt signaling pathway to identify a key cardiomyogenesis gene signature that can be applied to identify compounds and/or stress factors compromising the cardiomyogenesis process. Among the 23 tested teratogens and 16 non-teratogens, we identified three retinoids including 13-cis-retinoic acid that completely block the process of cardiomyogenesis in hiPSCs. Moreover, we have identified an early gene signature consisting of 31 genes and associated biological processes that are severely affected by the retinoids. To predict the inhibitory potential of teratogens and non-teratogens in the process of cardiomyogenesis we established the "Developmental Cardiotoxicity Index" (CDI31g) that accurately differentiates teratogens and non-teratogens to do or do not affect the differentiation of hiPSCs to functional cardiomyocytes.
RESUMEN
Significant evidence points to Strip2 being a key regulator of the differentiation processes of pluripotent embryonic stem cells. However, Strip2 mediated epigenetic regulation of embryonic differentiation and development is quite unknown. Here, we identified several interaction partners of Strip2, importantly the co-repressor molecular protein complex nucleosome remodeling deacetylase/Tripartite motif-containing 28/Histone deacetylases/Histone-lysine N-methyltransferase SETDB1 (NuRD/TRIM28/HDACs/SETDB1) histone methyltransferase, which is primarily involved in regulation of the pluripotency of embryonic stem cells and its differentiation. The complex is normally activated by binding of Krueppel-associated box zinc-finger proteins (KRAB-ZFPs) to specific DNA motifs, causing methylation of H3 to Lysin-9 residues (H3K9). Our data showed that Strip2 binds to a DNA motif (20 base pairs), like the KRAB-ZFPs. We establish that Strip2 is an epigenetic regulator of pluripotency and differentiation by modulating DNA KRAB-ZFPs as well as the NuRD/TRIM28/HDACs/SETDB1 histone methyltransferase complex.
RESUMEN
Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87-90%. A comparison to the UKK2 assay (accuracies of 90-92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92-95%. Although some compounds were misclassified by the individual tests, we conclude that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants.
Asunto(s)
Teratógenos , Pruebas de Toxicidad , Humanos , Teratógenos/toxicidad , Diferenciación Celular , Células Madre , Técnicas In VitroRESUMEN
Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different "omics" and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease.
RESUMEN
INTRODUCTION: Endothelial cells (ECs) form the inner lining of all blood vessels of the body play important roles in vascular tone regulation, hormone secretion, anticoagulation, regulation of blood cell adhesion and immune cell extravasation. Limitless ECs sources are required to further in vitro investigations of ECs' physiology and pathophysiology as well as for tissue engineering approaches. Ideally, the differentiation protocol avoids animal-derived components such as fetal serum and yields ECs at efficiencies that make further sorting obsolete for most applications. METHOD: Human induced pluripotent stem cells (hiPSCs) are cultured under serum-free conditions and induced into mesodermal progenitor cells via stimulation of Wnt signaling for 24 h. Mesodermal progenitor cells are further differentiated into ECs by utilizing a combination of human vascular endothelial growth factor A165 (VEGF), basic fibroblast growth factor (bFGF), 8-Bromoadenosine 3',5'-cyclic monophosphate sodium salt monohydrate (8Bro) and melatonin (Mel) for 48 h. RESULT: This combination generates hiPSC derived ECs (hiPSC-ECs) at a fraction of 90.9 ± 1.5% and is easily transferable from the two-dimensional (2D) monolayer into three-dimensional (3D) scalable bioreactor suspension cultures. hiPSC-ECs are positive for CD31, VE-Cadherin, von Willebrand factor and CD34. Furthermore, the majority of hiPSC-ECs express the vascular endothelial marker CD184 (CXCR4). CONCLUSION: The differentiation method presented here generates hiPSC-ECs in only 6 days, without addition of animal sera and at high efficiency, hence providing a scalable source of hiPSC-ECs.
Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular/fisiología , Células Endoteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mesodermo/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Live-cell imaging techniques are essential for acquiring vital physiological and pathophysiological knowledge to understand and treat heart disease. For live-cell imaging of transient alterations of [Ca2+]i in human cardiomyocytes, we engineered human-induced pluripotent stem cells carrying a genetically-encoded Ca2+-indicator (GECI). To monitor sarcomere shortening and relaxation in cardiomyocytes in real-time, we generated a α-cardiac actinin (ACTN2)-copepod (cop) green fluorescent protein (GFP+)-human-induced pluripotent stem cell line by using the CRISPR-Cas9 and a homology directed recombination approach. The engineered human-induced pluripotent stem cells were differentiated in transgenic GECI-enhanced GFP+-cardiomyocytes and ACTN2-copGFP+-cardiomyocytes, allowing real-time imaging of [Ca2+]i transients and live recordings of the sarcomere shortening velocity of ACTN2-copGFP+-cardiomyocytes. We developed a video analysis software tool to quantify various parameters of sarcoplasmic Ca2+ fluctuations recorded during contraction of cardiomyocytes and to calculate the contraction velocity of cardiomyocytes in the presence and absence of different drugs affecting cardiac function. Our cellular and software tool not only proved the positive and negative inotropic and lusitropic effects of the tested cardioactive drugs but also quantified the expected effects precisely. Our platform will offer a human-relevant in vitro alternative for high-throughput drug screenings, as well as a model to explore the underlying mechanisms of cardiac diseases.
Asunto(s)
Señalización del Calcio , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Actinina/metabolismo , Diferenciación Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismoRESUMEN
Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.
Asunto(s)
Células Madre Pluripotentes Inducidas , Transcriptoma , Sustancias Peligrosas , Humanos , Técnicas In Vitro , TeratógenosRESUMEN
Chimeric antigen receptor (CAR)-redirected T cell therapy often fails to control tumors in the long term due to selecting cancer cells that downregulated or lost CAR targeted antigen. To reprogram the functional capacities specifically of engineered CAR T cells, we inserted IL12 into the extracellular moiety of a CD28-ζ CAR; both the CAR endodomain and IL12 were functionally active, as indicated by antigen-redirected effector functions and STAT4 phosphorylation, respectively. The IL12-CAR reprogrammed CD8+ T cells toward a so far not recognized natural killer (NK) cell-like signature and a CD94+CD56+CD62Lhigh phenotype closely similar, but not identical, to NK and cytokine induced killer (CIK) cells. In contrast to conventional CAR T cells, IL12-CAR T cells acquired antigen-independent, human leukocyte antigen E (HLA-E) restricted cytotoxic capacities eliminating antigen-negative cancer cells in addition to eliminating cancer cells with CAR cognate antigen. Simultaneous signaling through both the CAR endodomain and IL12 were required for inducing maximal NK-like cytotoxicity; adding IL12 to conventional CAR T cells was not sufficient. Antigen-negative tumors were attacked by IL12-CAR T cells, but not by conventional CAR T cells. Overall, we present a prototype of a new family of CARs that augments tumor recognition and elimination through expanded functional capacities by an appropriate cytokine integrated into the CAR exodomain.
Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia Adoptiva , Interleucina-12 , Neoplasias , Linfocitos T CD8-positivos/inmunología , Humanos , Interleucina-12/inmunología , Células Asesinas Naturales/inmunología , Neoplasias/terapiaRESUMEN
Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.
Asunto(s)
Enfermedades Cardiovasculares/terapia , Genómica , Células Madre Pluripotentes/trasplante , Inteligencia Artificial , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Sistema Cardiovascular/citología , Sistema Cardiovascular/crecimiento & desarrollo , Diferenciación Celular , Descubrimiento de Drogas , Edición Génica , Humanos , Modelos Biológicos , Células Madre Pluripotentes/citología , Medicina de Precisión , Medicina Regenerativa , Seguridad , Investigación Biomédica TraslacionalRESUMEN
In vitro differentiation of embryonic stem cells (ESCs) provides a convenient basis for the study of microRNA-based gene regulation that is relevant for early cardiogenic processes. However, to which degree insights gained from in vitro differentiation models can be readily transferred to the in vivo system remains unclear. In this study, we profiled simultaneous genome-wide measurements of mRNAs and microRNAs (miRNAs) of differentiating murine ESCs (mESCs) and integrated putative miRNA-gene interactions to assess miRNA-driven gene regulation. To identify interactions conserved between in vivo and in vitro, we combined our analysis with a recent transcriptomic study of early murine heart development in vivo. We detected over 200 putative miRNA-mRNA interactions with conserved expression patterns that were indicative of gene regulation across the in vitro and in vivo studies. A substantial proportion of candidate interactions have been already linked to cardiogenesis, supporting the validity of our approach. Notably, we also detected miRNAs with expression patterns that closely resembled those of key developmental transcription factors. The approach taken in this study enabled the identification of miRNA interactions in in vitro models with potential relevance for early cardiogenic development. Such comparative approaches will be important for the faithful application of stem cells in cardiovascular research.
Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , MicroARNs/metabolismo , Miocitos Cardíacos/citología , Organogénesis , ARN Mensajero/metabolismo , Transcriptoma , Animales , Células Madre Embrionarias/metabolismo , Exones , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ratones , MicroARNs/genética , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , Secuenciación del ExomaAsunto(s)
Edición Génica , Medicina de Precisión , Sistemas CRISPR-Cas , Descubrimiento de Drogas , TecnologíaRESUMEN
The cardiovascular toxicity of anticancer drugs promotes the development of cardiovascular diseases. Therefore, cardiovascular toxicity is an important safety issue that must be considered when developing medications and therapeutic applications to treat cancer. Among anticancer drugs, members of the anthracycline family, such as doxorubicin, daunorubicin and mitoxantrone, are known to cause cardiotoxicity and even heart failure. Using human-induced pluripotent stem cell-derived cardiomyocytes in combination with "Omic" technologies, we identified several cardiotoxicity mechanisms and signal transduction pathways. Moreover, these drugs acted as cardiovascular toxicants through a syndrome of mechanisms, including epigenetic ones. Herein, we discuss the main cardiovascular toxicity mechanisms, with an emphasis on those associated with reactive oxygen species and mitochondria that contribute to cardiotoxic epigenetic modifications. We also discuss how to mitigate the cardiotoxic effects of anticancer drugs using available pharmaceutical "weapons."
RESUMEN
PURPOSE: Expression-based classifiers to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) are not routinely used in the clinic. We aimed to build and validate a classifier for pCR after NACT. PATIENTS AND METHODS: We performed a prospective multicenter study (EXPRESSION) including 114 patients treated with anthracycline/taxane-based NACT. Pretreatment core needle biopsies from 91 patients were used for gene expression analysis and classifier construction, followed by validation in five external cohorts (n = 619). RESULTS: A 20-gene classifier established in the EXPRESSION cohort using a Youden index-based cut-off point predicted pCR in the validation cohorts with an accuracy, AUC, negative predictive value (NPV), positive predictive value, sensitivity, and specificity of 0.811, 0.768, 0.829, 0.587, 0.216, and 0.962, respectively. Alternatively, aiming for a high NPV by defining the cut-off point for classification based on the complete responder with the lowest predicted probability of pCR in the EXPRESSION cohort led to an NPV of 0.960 upon external validation. With this extreme-low cut-off point, a recommendation to not treat with anthracycline/taxane-based NACT would be possible for 121 of 619 unselected patients (19.5%) and 112 of 322 patients with luminal breast cancer (34.8%). The analysis of the molecular subtypes showed that the identification of patients who do not achieve a pCR by the 20-gene classifier was particularly relevant in luminal breast cancer. CONCLUSIONS: The novel 20-gene classifier reliably identifies patients who do not achieve a pCR in about one third of luminal breast cancers in both the EXPRESSION and combined validation cohorts.