RESUMEN
Current HIV vaccines designed to stimulate CD8+ T cells have failed to induce immunologic control upon infection. The functions of vaccine-induced HIV-specific CD8+ T cells were investigated here in detail. Cytotoxic capacity was significantly lower than in HIV controllers and was not a consequence of low frequency or unaccumulated functional cytotoxic proteins. Low cytotoxic capacity was attributable to impaired degranulation in response to the low antigen levels present on HIV-infected targets. The vaccine-induced T cell receptor (TCR) repertoire was polyclonal and transduction of these TCRs conferred the same reduced functions. These results define a mechanism accounting for poor antiviral activity induced by these vaccines and suggest that an effective CD8+ T cell response may require a vaccination strategy that drives further TCR clonal selection.
Asunto(s)
Vacunas contra el SIDA , Degranulación de la Célula , Citotoxicidad Inmunológica , Infecciones por VIH , Linfocitos T Citotóxicos , Humanos , Vacunas contra el SIDA/inmunología , Células Clonales , Infecciones por VIH/prevención & control , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/inmunología , Degranulación de la Célula/inmunologíaRESUMEN
PURPOSE: Immune checkpoint blockade (ICB) agents and adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TIL) are prominent immunotherapies used for the treatment of advanced melanoma. Both therapies rely on activation of lymphocytes that target shared tumor antigens or neoantigens. Recent analysis of patients with metastatic melanoma who underwent treatment with TIL ACT at the NCI demonstrated decreased responses in patients previously treated with anti-PD-1 agents. We aimed to find a basis for the difference in response rates between anti-PD-1 naïve and experienced patients. PATIENTS AND METHODS: We examined the tumor mutational burden (TMB) of resected tumors and the repertoire of neoantigens targeted by autologous TIL in a cohort of 112 anti-PD-1 naïve and 69 anti-PD-1 experienced patients. RESULTS: Anti-PD-1 naïve patients were found to possess tumors with higher TMBs (352.0 vs. 213.5, P = 0.005) and received TIL reactive with more neoantigens (2 vs. 1, P = 0.003) compared with anti-PD-1 experienced patients. Among patients treated with TIL ACT, TMB and number of neoantigens identified were higher in ACT responders than ACT nonresponders in both anti-PD-1 naïve and experienced patients. Among patients with comparable TMBs and predicted neoantigen loads, treatment products administered to anti-PD-1 naïve patients were more likely to contain T cells reactive against neoantigens than treatment products for anti-PD-1 experienced patients (2.5 vs. 1, P = 0.02). CONCLUSIONS: These results indicate that decreases in TMB and targeted neoantigens partially account for the difference in response to ACT and that additional factors likely influence responses in these patients. See related commentary by Blass and Ott, p. 2980.
Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Antígenos de Neoplasias/inmunología , Humanos , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patologíaRESUMEN
The accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8+ and CD4+ neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs. Prospective prediction and testing of 73 NeoTCR signature-derived clonotypes demonstrated that half of the tested TCRs recognized tumor antigens or autologous tumors. NeoTCR signatures identified TCRs that target driver neoantigens and nonmutated viral or tumor-associated antigens, suggesting a common metastatic TIL exhaustion program. NeoTCR signatures delineate the landscape of TILs across metastatic tumors, enabling successful TCR prediction based purely on TIL transcriptomic states for use in cancer immunotherapy.
Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Metástasis de la Neoplasia , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Transcriptoma , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Redes Reguladoras de Genes , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA-Seq , Análisis de la Célula IndividualRESUMEN
Tumor neoepitopes presented by major histocompatibility complex (MHC) class I are recognized by tumor-infiltrating lymphocytes (TIL) and are targeted by adoptive T-cell therapies. Identifying which mutant neoepitopes from tumor cells are capable of recognition by T cells can assist in the development of tumor-specific, cell-based therapies and can shed light on antitumor responses. Here, we generate a ranking algorithm for class I candidate neoepitopes by using next-generation sequencing data and a dataset of 185 neoepitopes that are recognized by HLA class I-restricted TIL from individuals with metastatic cancer. Random forest model analysis showed that the inclusion of multiple factors impacting epitope presentation and recognition increased output sensitivity and specificity compared to the use of predicted HLA binding alone. The ranking score output provides a set of class I candidate neoantigens that may serve as therapeutic targets and provides a tool to facilitate in vitro and in vivo studies aimed at the development of more effective immunotherapies.
Asunto(s)
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Aprendizaje Automático , Neoplasias/genética , Linfocitos TRESUMEN
Adoptive T cell therapy (ACT) using ex vivo-expanded autologous tumor-infiltrating lymphocytes (TILs) can mediate complete regression of certain human cancers. The impact of TIL phenotypes on clinical success of TIL-ACT is currently unclear. Using high-dimensional analysis of human ACT products, we identified a memory-progenitor CD39-negative stem-like phenotype (CD39-CD69-) associated with complete cancer regression and TIL persistence and a terminally differentiated CD39-positive state (CD39+CD69+) associated with poor TIL persistence. Most antitumor neoantigen-reactive TILs were found in the differentiated CD39+ state. However, ACT responders retained a pool of CD39- stem-like neoantigen-specific TILs that was lacking in ACT nonresponders. Tumor-reactive stem-like TILs were capable of self-renewal, expansion, persistence, and superior antitumor response in vivo. These data suggest that TIL subsets mediating ACT response are distinct from TIL subsets enriched for antitumor reactivity.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor/trasplante , Melanoma/terapia , Neoplasias Cutáneas/terapia , Animales , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Apirasa/análisis , Linfocitos T CD8-positivos/química , Femenino , Humanos , Lectinas Tipo C/análisis , Melanoma/inmunología , Ratones , Ratones Mutantes , Neoplasias Cutáneas/inmunologíaRESUMEN
The availability of MHC-binding prediction tools has been useful in guiding studies aimed at identifying candidate target Ags to generate reactive T cells and to characterize viral and tumor-reactive T cells. Nevertheless, prediction algorithms appear to function poorly for epitopes containing cysteine (Cys) residues, which can oxidize and form disulfide bonds with other Cys residues under oxidizing conditions, thus potentially interfering with their ability to bind to MHC molecules. Analysis of the results of HLA-A*02:01 class I binding assays carried out in the presence and absence of the reducing agent 2-ME indicated that the predicted affinity for 25% of Cys-containing epitopes was underestimated by a factor of 3 or more. Additional analyses were undertaken to evaluate the responses of human CD8+ tumor-reactive T cells against 10 Cys-containing HLA class I-restricted minimal determinants containing substitutions of α-aminobutyric acid (AABA), a cysteine analogue containing a methyl group in place of the sulfhydryl group present in Cys, for the native Cys residues. Substitutions of AABA for Cys at putative MHC anchor positions often significantly enhanced T cell recognition, whereas substitutions at non-MHC anchor positions were neutral, except for one epitope where this modification abolished T cell recognition. These findings demonstrate the need to evaluate MHC binding and T cell recognition of Cys-containing peptides under conditions that prevent Cys oxidation, and to adjust current prediction binding algorithms for HLA-A*02:01 and potentially additional class I alleles to more accurately rank peptides containing Cys anchor residues.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Cisteína/metabolismo , Neoplasias/inmunología , Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Secuencia de Aminoácidos , Presentación de Antígeno , Antígenos de Neoplasias/inmunología , Células Cultivadas , Epítopos de Linfocito T/inmunología , Antígeno HLA-A2/metabolismo , Humanos , Activación de Linfocitos , Unión Proteica , Especificidad del Receptor de Antígeno de Linfocitos TRESUMEN
PURPOSE: The purpose of this study was to evaluate antigen experienced T cells in peripheral blood lymphocytes (PBL) for responses to p53 neoantigens. EXPERIMENTAL DESIGN: PBLs from patients with a mutated TP53 tumor were sorted for antigen-experienced T cells and in vitro stimulation (IVS) was performed with p53 neoantigens. The IVS cultures were stimulated with antigen-presenting cells expressing p53 neoantigens, enriched for 41BB/OX40 and grown with rapid expansion protocol. RESULTS: T-cell responses were not observed in the PBLs of 4 patients who did not have tumor-infiltrating lymphocyte (TIL) responses to mutated TP53. In contrast, 5 patients with TIL responses to mutated TP53 also had similar T-cell responses in their PBLs, indicating that the PBLs and TILs were congruent in p53 neoantigen reactivity. CD4+ and CD8+ T cells were specific for p53R175H, p53Y220C, or p53R248W neoantigens, including a 78% reactive T-cell culture against p53R175H and HLA-A*02:01. Tracking TCRB clonotypes (clonality, top ranked, and TP53 mutation-specific) supported the enrichment of p53 neoantigen-reactive T cells from PBLs. The same T-cell receptor (TCR) from the TIL was found in the IVS cultures in three cases and multiple unique TCRs were found in another patient. TP53 mutation-specific T cells also recognized tumor cell lines bearing the appropriate human leukocyte antigen restriction element and TP53 mutation, indicating these T cells could recognize processed and presented p53 neoantigens. CONCLUSIONS: PBL was a noninvasive source of T cells targeting TP53 mutations for cell therapy and can provide a window into intratumoral p53 neoantigen immune responses.See related commentary by Olivera et al., p. 1203.
Asunto(s)
Linfocitos T CD8-positivos , Proteína p53 Supresora de Tumor , Antígenos de Neoplasias/genética , Linfocitos T CD8-positivos/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Oncogenes , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Immunotherapies can mediate regression of human tumors with high mutation rates, but responses are rarely observed in patients with common epithelial cancers. This raises the question of whether patients with these common cancers harbor T lymphocytes that recognize mutant proteins expressed by autologous tumors that may represent ideal targets for immunotherapy. Using high-throughput immunologic screening of mutant gene products identified via whole-exome sequencing, we identified neoantigen-reactive tumor-infiltrating lymphocytes (TIL) from 62 of 75 (83%) patients with common gastrointestinal cancers. In total, 124 neoantigen-reactive TIL populations were identified, and all but one of the neoantigenic determinants were unique. The results of in vitro T-cell recognition assays demonstrated that 1.6% of the gene products encoded by somatic nonsynonymous mutations were immunogenic. These findings demonstrate that the majority of common epithelial cancers elicit immune recognition and open possibilities for cell-based immunotherapies for patients bearing these cancers. SIGNIFICANCE: TILs cultured from 62 of 75 (83%) patients with gastrointestinal cancers recognized neoantigens encoded by 1.6% of somatic mutations expressed by autologous tumor cells, and 99% of the neoantigenic determinants appeared to be unique and not shared between patients.This article is highlighted in the In This Issue feature, p. 983.
Asunto(s)
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Susceptibilidad a Enfermedades , Neoplasias Gastrointestinales/etiología , Neoplasias Gastrointestinales/metabolismo , Mutación , Biomarcadores de Tumor , Neoplasias Gastrointestinales/patología , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patologíaAsunto(s)
Antígenos de Neoplasias , Antígeno HLA-A2 , Cadenas beta de HLA-DP , Mutación , Neoplasias Glandulares y Epiteliales , Proteína p53 Supresora de Tumor , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Femenino , Antígeno HLA-A2/genética , Antígeno HLA-A2/inmunología , Cadenas beta de HLA-DP/genética , Cadenas beta de HLA-DP/inmunología , Humanos , Masculino , Ratones , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Glandulares y Epiteliales/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunologíaRESUMEN
T cells targeting shared oncogenic mutations can induce durable tumor regression in epithelial cancer patients. Such T cells can be detected in tumor infiltrating lymphocytes, but whether such cells can be detected in the peripheral blood of patients with the common metastatic epithelial cancer patients is unknown. Using a highly sensitive in vitro stimulation and cell enrichment of peripheral memory T cells from six metastatic cancer patients, we identified and isolated CD4+, and CD8+ memory T cells targeting the mutated KRASG12D and KRASG12V variants, respectively, in three patients. In an additional two metastatic colon cancer patients, we detected CD8+ neoantigen-specific cells targeting the mutated SMAD5 and MUC4 proteins. Therefore, memory T cells targeting unique as well as shared somatic mutations can be detected in the peripheral blood of epithelial cancer patients and can potentially be used for the development of effective personalized T cell-based cancer immunotherapy across multiple patients.