Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Comput Biol ; 20(5): e1012053, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709828

RESUMEN

Monosynaptic connectivity mapping is crucial for building circuit-level models of neural computation. Two-photon optogenetic stimulation, when combined with whole-cell recording, enables large-scale mapping of physiological circuit parameters. In this experimental setup, recorded postsynaptic currents are used to infer the presence and strength of connections. For many cell types, nearby connections are those we expect to be strongest. However, when the postsynaptic cell expresses opsin, optical excitation of nearby cells can induce direct photocurrents in the postsynaptic cell. These photocurrent artifacts contaminate synaptic currents, making it difficult or impossible to probe connectivity for nearby cells. To overcome this problem, we developed a computational tool, Photocurrent Removal with Constraints (PhoRC). Our method is based on a constrained matrix factorization model which leverages the fact that photocurrent kinetics are less variable than those of synaptic currents. We demonstrate on real and simulated data that PhoRC consistently removes photocurrents while preserving synaptic currents, despite variations in photocurrent kinetics across datasets. Our method allows the discovery of synaptic connections which would have been otherwise obscured by photocurrent artifacts, and may thus reveal a more complete picture of synaptic connectivity. PhoRC runs faster than real time and is available as open source software.


Asunto(s)
Artefactos , Biología Computacional , Modelos Neurológicos , Optogenética , Optogenética/métodos , Animales , Biología Computacional/métodos , Sinapsis/fisiología , Ratones , Neuronas/fisiología , Programas Informáticos , Simulación por Computador , Algoritmos , Técnicas de Placa-Clamp/métodos , Humanos
2.
Cell Rep ; 42(8): 112909, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37542722

RESUMEN

Determining which features of the neural code drive behavior requires the ability to simultaneously read out and write in neural activity patterns with high precision across many neurons. All-optical systems that combine two-photon calcium imaging and targeted photostimulation enable the activation of specific, functionally defined groups of neurons. However, these techniques are unable to test how patterns of activity across a population contribute to computation because of an inability to both read and write cell-specific firing rates. To overcome this challenge, we make two advances: first, we introduce a genetic line of mice for Cre-dependent co-expression of a calcium indicator and a potent soma-targeted microbial opsin. Second, using this line, we develop a method for read-out and write-in of precise population vectors of neural activity by calibrating the photostimulation to each cell. These advances offer a powerful and convenient platform for investigating the neural codes of computation and behavior.


Asunto(s)
Calcio , Optogenética , Ratones , Animales , Ratones Transgénicos , Optogenética/métodos , Neuronas/fisiología , Recreación
3.
Mol Metab ; 76: 101781, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482186

RESUMEN

OBJECTIVE: Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS: We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS: We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS: The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.


Asunto(s)
Metabolismo Energético , Neuropéptidos , Hormonas Peptídicas , Animales , Ratones , Dieta , Homeostasis , Neuropéptidos/genética , Neuropéptidos/química , Fragmentos de Péptidos/farmacología , Metabolismo Energético/genética , Metabolismo Energético/fisiología
4.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993202

RESUMEN

Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Here, we developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R 21 →A). We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by a temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.

5.
Neuron ; 110(7): 1139-1155.e6, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35120626

RESUMEN

The biophysical properties of existing optogenetic tools constrain the scale, speed, and fidelity of precise optogenetic control. Here, we use structure-guided mutagenesis to engineer opsins that exhibit very high potency while retaining fast kinetics. These new opsins enable large-scale, temporally and spatially precise control of population neural activity. We extensively benchmark these new opsins against existing optogenetic tools and provide a detailed biophysical characterization of a diverse family of opsins under two-photon illumination. This establishes a resource for matching the optimal opsin to the goals and constraints of patterned optogenetics experiments. Finally, by combining these new opsins with optimized procedures for holographic photostimulation, we demonstrate the simultaneous coactivation of several hundred spatially defined neurons with a single hologram and nearly double that number by temporally interleaving holograms at fast rates. These newly engineered opsins substantially extend the capabilities of patterned illumination optogenetic paradigms for addressing neural circuits and behavior.


Asunto(s)
Red Nerviosa , Opsinas , Optogenética , Holografía/métodos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Opsinas/química , Opsinas/genética , Optogenética/métodos
6.
Neuron ; 109(7): 1202-1213.e5, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33609483

RESUMEN

The frontal cortex, especially the anterior cingulate cortex area (ACA), is essential for exerting cognitive control after errors, but the mechanisms that enable modulation of attention to improve performance after errors are poorly understood. Here we demonstrate that during a mouse visual attention task, ACA neurons projecting to the visual cortex (VIS; ACAVIS neurons) are recruited selectively by recent errors. Optogenetic manipulations of this pathway collectively support the model that rhythmic modulation of ACAVIS neurons in anticipation of visual stimuli is crucial for adjusting performance following errors. 30-Hz optogenetic stimulation of ACAVIS neurons in anesthetized mice recapitulates the increased gamma and reduced theta VIS oscillatory changes that are associated with endogenous post-error performance during behavior and subsequently increased visually evoked spiking, a hallmark feature of visual attention. This frontal sensory neural circuit links error monitoring with implementing adjustments of attention to guide behavioral adaptation, pointing to a circuit-based mechanism for promoting cognitive control.


Asunto(s)
Atención/fisiología , Lóbulo Frontal/fisiología , Reclutamiento Neurofisiológico/fisiología , Animales , Conducta Animal , Electroencefalografía , Fenómenos Electrofisiológicos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Corteza Somatosensorial/fisiología , Corteza Visual/fisiología
7.
Nat Neurosci ; 23(10): 1240-1252, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32868932

RESUMEN

Juvenile social isolation reduces sociability in adulthood, but the underlying neural circuit mechanisms are poorly understood. We found that, in male mice, 2 weeks of social isolation immediately following weaning leads to a failure to activate medial prefrontal cortex neurons projecting to the posterior paraventricular thalamus (mPFC→pPVT) during social exposure in adulthood. Chemogenetic or optogenetic suppression of mPFC→pPVT activity in adulthood was sufficient to induce sociability deficits without affecting anxiety-related behaviors or preference toward rewarding food. Juvenile isolation led to both reduced excitability of mPFC→pPVT neurons and increased inhibitory input drive from low-threshold-spiking somatostatin interneurons in adulthood, suggesting a circuit mechanism underlying sociability deficits. Chemogenetic or optogenetic stimulation of mPFC→pPVT neurons in adulthood could rescue the sociability deficits caused by juvenile isolation. Our study identifies a pair of specific medial prefrontal cortex excitatory and inhibitory neuron populations required for sociability that are profoundly affected by juvenile social experience.


Asunto(s)
Núcleos Talámicos de la Línea Media/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Conducta Animal , Interneuronas/fisiología , Masculino , Vías Nerviosas/fisiología , Optogenética , Aislamiento Social
8.
Nat Commun ; 11(1): 3983, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770078

RESUMEN

Frontal top-down cortical neurons projecting to sensory cortical regions are well-positioned to integrate long-range inputs with local circuitry in frontal cortex to implement top-down attentional control of sensory regions. How adolescence contributes to the maturation of top-down neurons and associated local/long-range input balance, and the establishment of attentional control is poorly understood. Here we combine projection-specific electrophysiological and rabies-mediated input mapping in mice to uncover adolescence as a developmental stage when frontal top-down neurons projecting from the anterior cingulate to visual cortex are highly functionally integrated into local excitatory circuitry and have heightened activity compared to adulthood. Chemogenetic suppression of top-down neuron activity selectively during adolescence, but not later periods, produces long-lasting visual attentional behavior deficits, and results in excessive loss of local excitatory inputs in adulthood. Our study reveals an adolescent sensitive period when top-down neurons integrate local circuits with long-range connectivity to produce attentional behavior.


Asunto(s)
Envejecimiento/fisiología , Atención/fisiología , Conducta Animal/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Channelrhodopsins/metabolismo , Giro del Cíngulo/fisiología , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Inhibición Neural/fisiología , Terminales Presinápticos/fisiología , Rabia/fisiopatología , Sinapsis/fisiología , Visión Ocular/fisiología
9.
Neural Plast ; 2020: 1673897, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32454811

RESUMEN

The tens of thousands of industrial and synthetic chemicals released into the environment have an unknown but potentially significant capacity to interfere with neurodevelopment. Consequently, there is an urgent need for systematic approaches that can identify disruptive chemicals. Little is known about the impact of environmental chemicals on critical periods of developmental neuroplasticity, in large part, due to the challenge of screening thousands of chemicals. Using an integrative bioinformatics approach, we systematically scanned 2001 environmental chemicals and identified 50 chemicals that consistently dysregulate two transcriptional signatures of critical period plasticity. These chemicals included pesticides (e.g., pyridaben), antimicrobials (e.g., bacitracin), metals (e.g., mercury), anesthetics (e.g., halothane), and other chemicals and mixtures (e.g., vehicle emissions). Application of a chemogenomic enrichment analysis and hierarchical clustering across these diverse chemicals identified two clusters of chemicals with one that mimicked an immune response to pathogen, implicating inflammatory pathways and microglia as a common chemically induced neuropathological process. Thus, we established an integrative bioinformatics approach to systematically scan thousands of environmental chemicals for their ability to dysregulate molecular signatures relevant to critical periods of development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Inmunidad/genética , Plasticidad Neuronal/genética , Transcriptoma/genética , Animales , Encéfalo/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Genómica , Ratones Endogámicos C57BL
10.
J Neurosci ; 40(27): 5214-5227, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32467358

RESUMEN

The limitation of plasticity in the adult brain impedes functional recovery later in life from brain injury or disease. This pressing clinical issue may be resolved by enhancing plasticity in the adult brain. One strategy for triggering robust plasticity in adulthood is to reproduce one of the hallmark physiological events of experience-dependent plasticity observed during the juvenile critical period: to rapidly reduce the activity of parvalbumin (PV)-expressing interneurons and disinhibit local excitatory neurons. This may be achieved through the enhancement of local inhibitory inputs, particularly those of somatostatin (SST)-expressing interneurons. However, to date the means for manipulating SST interneurons for enhancing cortical plasticity in the adult brain are not known. We show that SST interneuron-selective overexpression of Lypd6, an endogenous nicotinic signaling modulator, enhances ocular dominance plasticity in the adult primary visual cortex (V1). Lypd6 overexpression mediates a rapid experience-dependent increase in the visually evoked activity of SST interneurons as well as a simultaneous reduction in PV interneuron activity and disinhibition of excitatory neurons. Recapitulating this transient activation of SST interneurons using chemogenetics similarly enhanced V1 plasticity. Notably, we show that SST-selective Lypd6 overexpression restores visual acuity in amblyopic mice that underwent early long-term monocular deprivation. Our data in both male and female mice reveal selective modulation of SST interneurons and a putative downstream circuit mechanism as an effective method for enhancing experience-dependent cortical plasticity as well as functional recovery in adulthood.SIGNIFICANCE STATEMENT The decline of cortical plasticity after closure of juvenile critical period consolidates neural circuits and behavior, but this limits functional recovery from brain diseases and dysfunctions in later life. Here we show that activation of cortical somatostatin (SST) interneurons by Lypd6, an endogenous modulator of nicotinic acetylcholine receptors, enhances experience-dependent plasticity and recovery from amblyopia in adulthood. This manipulation triggers rapid reduction of PV interneuron activity and disinhibition of excitatory neurons, which are known hallmarks of cortical plasticity during juvenile critical periods. Our study demonstrates modulation of SST interneurons by Lypd6 to achieve robust levels of cortical plasticity in the adult brain and may provide promising targets for restoring brain function in the event of brain trauma or disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Ligadas a GPI/fisiología , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Somatostatina/fisiología , Corteza Visual/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Predominio Ocular/genética , Potenciales Evocados Visuales/genética , Potenciales Evocados Visuales/fisiología , Femenino , Proteínas Ligadas a GPI/genética , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/genética , Fosfatidilinositoles/farmacología , Receptores Nicotínicos/genética , Recuperación de la Función/genética , Visión Monocular/genética , Visión Monocular/fisiología , Agudeza Visual/genética
11.
Sci Rep ; 8(1): 16388, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401819

RESUMEN

Given that thousands of chemicals released into the environment have the potential capacity to harm neurodevelopment, there is an urgent need to systematically evaluate their toxicity. Neurodevelopment is marked by critical periods of plasticity wherein neural circuits are refined by the environment to optimize behavior and function. If chemicals perturb these critical periods, neurodevelopment can be permanently altered. Focusing on 214 human neurotoxicants, we applied an integrative bioinformatics approach using publically available data to identify dozens of neurotoxicant signatures that disrupt a transcriptional signature of a critical period for brain plasticity. This identified lead (Pb) as a critical period neurotoxicant and we confirmed in vivo that Pb partially suppresses critical period plasticity at a time point analogous to exposure associated with autism. This work demonstrates the utility of a novel informatics approach to systematically identify neurotoxicants that disrupt childhood neurodevelopment and can be extended to assess other environmental chemicals.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Biología Computacional , Plomo/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Neurotoxinas/toxicidad , Animales , Encéfalo/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Cell Rep ; 20(10): 2480-2489, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877479

RESUMEN

The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet ß cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the ß cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet ß cell to coordinate insulin biosynthesis with ß cell secretory capacity.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Vesículas Secretoras/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , Red trans-Golgi/metabolismo
13.
Neuropeptides ; 64: 75-83, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28024880

RESUMEN

Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre+/-,Vgfflpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system.


Asunto(s)
Peso Corporal/fisiología , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Animales , Dieta , Metabolismo Energético/genética , Ratones , Factores de Crecimiento Nervioso , Neuronas/metabolismo , Obesidad/metabolismo
14.
J Physiol Paris ; 110(1-2): 29-36, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27840212

RESUMEN

While the cholinergic neuromodulatory system and muscarinic acetylcholine receptors (AChRs) have been appreciated as permissive factors for developmental critical period plasticity in visual cortex, it was unknown why plasticity becomes limited after the critical period even in the presence of massive cholinergic projections to visual cortex. In this review we highlighted the recent progresses that started to shed light on the role of the nicotinic cholinergic neuromodulatory signaling on limiting juvenile form of plasticity in the adult brain. We introduce the Lynx family of proteins and Lynx1 as its representative, as endogenous proteins structurally similar to α-bungarotoxin with the ability to bind and modulate nAChRs to effectively regulate functional and structural plasticity. Remarkably, Lynx family members are expressed in distinct subpopulations of GABAergic interneurons, placing them in unique positions to potentially regulate the convergence of GABAergic and nicotinic neuromodulatory systems to regulate plasticity. Continuing studies of the potentially differential roles of Lynx family of proteins may further our understanding of the fundamentals of molecular and cell type-specific mechanisms of plasticity that we may be able to harness through nicotinic cholinergic signaling.


Asunto(s)
Plasticidad Neuronal/fisiología , Nicotina/metabolismo , Corteza Visual/fisiología , Animales , Neuronas Colinérgicas/metabolismo , Humanos , Interneuronas/metabolismo , Neuropéptidos/metabolismo , Receptores Nicotínicos/metabolismo
15.
eNeuro ; 3(6)2016.
Artículo en Inglés | MEDLINE | ID: mdl-28101530

RESUMEN

Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/inmunología , Inflamación/metabolismo , Plasticidad Neuronal/fisiología , Proteínas Adaptadoras Transductoras de Señales , Algoritmos , Animales , Período Crítico Psicológico , Predominio Ocular/fisiología , Escherichia coli , Lipopolisacáridos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Microelectrodos , Neuropéptidos/genética , Neuropéptidos/metabolismo , Reacción en Cadena de la Polimerasa , Privación Sensorial/fisiología , Transcripción Genética , Transcriptoma
16.
J Neurosci ; 35(37): 12693-702, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377459

RESUMEN

Experience-dependent cortical plasticity declines with age. At the molecular level, experience-dependent proteolytic activity of tissue plasminogen activator (tPA) becomes restricted in the adult brain if mice are raised in standard cages. Understanding the mechanism for the loss of permissive proteolytic activity is therefore a key link for improving function in adult brains. Using the mouse primary visual cortex (V1) as a model, we demonstrate that tPA activity in V1 can be unmasked following 4 d of monocular deprivation when the mice older than 2 months are raised in standard cages by the genetic removal of Lynx1, a negative regulator of adult plasticity. This was also associated with the reduction of stubby and thin spine density and enhancement of ocular dominance shift in adult V1 of Lynx1 knock-out (KO) mice. These structural and functional changes were tPA-dependent because genetic removal of tPA in Lynx1 KO mice can block the monocular deprivation-dependent reduction of dendritic spine density, whereas both genetic and adult specific inhibition of tPA activity can ablate the ocular dominance shift in Lynx1 KO mice. Our work demonstrates that the adult brain has an intrinsic potential for experience-dependent elevation of proteolytic activity to express juvenile-like structural and functional changes but is effectively limited by Lynx1 if mice are raised in standard cages. Insights into the Lynx1-tPA plasticity mechanism may provide novel therapeutic targets for adult brain disorders. SIGNIFICANCE STATEMENT: Experience-dependent proteolytic activity of tissue plasminogen activator (tPA) becomes restricted in the adult brain in correlation with the decline in cortical plasticity when mice are raised in standard cages. We demonstrated that removal of Lynx1, one of negative regulators of plasticity, unmasks experience-dependent tPA elevation in visual cortex of adult mice reared in standard cages. This proteolytic elevation facilitated dendritic spine reduction and ocular dominance plasticity in adult visual cortex. This is the first demonstration of adult brain to retain the intrinsic capacity to elevate tPA in an experience-dependent manner but is effectively limited by Lynx1. tPA-Lynx1 may potentially be a new candidate mechanism for interventions that were shown to activate plasticity in adult brain.


Asunto(s)
Ambiente , Glicoproteínas de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Neuropéptidos/fisiología , Activador de Tejido Plasminógeno/fisiología , Corteza Visual/fisiopatología , Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales , Envejecimiento/fisiología , Animales , Ceguera/fisiopatología , Espinas Dendríticas/ultraestructura , Predominio Ocular , Femenino , Genes Reporteros , Vivienda para Animales , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/deficiencia , Neuropéptidos/genética , Privación Sensorial/fisiología
17.
J Neurosci ; 35(28): 10343-56, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26180209

RESUMEN

Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. SIGNIFICANCE STATEMENT: Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a prominent role in cognitive function, and rapidly and robustly induces expression of VGF, a secreted neuronal peptide precursor. VGF knock-out mice have impaired fear and spatial memory. Our study shows that VGF and VGF-derived peptide TLQP-62 are transiently induced after fear memory training, leading to increased BDNF/TrkB signaling, and that sequestration of hippocampal TLQP-62 immediately after training impairs memory formation. We propose that TLQP-62 is a critical component of a positive regulatory loop that is induced by memory training, rapidly reinforces BDNF-TrkB signaling, and is required for hippocampal memory consolidation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Memoria/fisiología , Neuropéptidos/metabolismo , Péptidos/administración & dosificación , Receptor trkB/metabolismo , Animales , Reacción de Prevención , Encéfalo/citología , Condicionamiento Psicológico/fisiología , Regulación hacia Abajo/genética , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Flavanonas/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Crecimiento Nervioso , Neuronas/fisiología , Neuropéptidos/genética , Péptidos/metabolismo , Ratas , Ratas Long-Evans , Receptor trkB/antagonistas & inhibidores
19.
Endocrinology ; 156(5): 1724-38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25675362

RESUMEN

Targeted deletion of VGF, a secreted neuronal and endocrine peptide precursor, produces lean, hypermetabolic, and infertile mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes. Previous studies suggest that VGF controls energy expenditure (EE), fat storage, and lipolysis, whereas VGF C-terminal peptides also regulate reproductive behavior and glucose homeostasis. To assess the functional equivalence of human VGF(1-615) (hVGF) and mouse VGF(1-617) (mVGF), and to elucidate the function of the VGF C-terminal region in the regulation of energy balance and susceptibility to obesity, we generated humanized VGF knockin mouse models expressing full-length hVGF or a C-terminally deleted human VGF(1-524) (hSNP), encoded by a single nucleotide polymorphism (rs35400704). We show that homozygous male and female hVGF and hSNP mice are fertile. hVGF female mice had significantly increased body weight compared with wild-type mice, whereas hSNP mice have reduced adiposity, increased activity- and nonactivity-related EE, and improved glucose tolerance, indicating that VGF C-terminal peptides are not required for reproductive function, but 1 or more specific VGF C-terminal peptides are likely to be critical regulators of EE. Taken together, our results suggest that human and mouse VGF proteins are largely functionally conserved but that species-specific differences in VGF peptide function, perhaps a result of known differences in receptor binding affinity, likely alter the metabolic phenotype of hVGF compared with mVGF mice, and in hSNP mice in which several C-terminal VGF peptides are ablated, result in significantly increased activity- and nonactivity-related EE.


Asunto(s)
Glucemia/metabolismo , Metabolismo Energético/genética , Fertilidad/genética , Lipólisis/genética , Factores de Crecimiento Nervioso/genética , Tejido Adiposo/metabolismo , Adiposidad/genética , Animales , Peso Corporal/genética , Femenino , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Músculo Esquelético/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Péptidos/genética , Péptidos/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Pain ; 155(7): 1229-1237, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24657450

RESUMEN

VGF (nonacronymic) is a granin-like protein that is packaged and proteolytically processed within the regulated secretory pathway. VGF and peptides derived from its processing have been implicated in neuroplasticity associated with learning, memory, depression, and chronic pain. In sensory neurons, VGF is rapidly increased following peripheral nerve injury and inflammation. Several bioactive peptides generated from the C-terminus of VGF have pronociceptive spinal effects. The goal of the present study was to examine the spinal effects of the peptide TLQP-21 and determine whether it participates in spinal mechanisms of persistent pain. Application of exogenous TLQP-21 induced dose-dependent thermal hyperalgesia in the warm-water immersion tail-withdrawal test. This hyperalgesia was inhibited by a p38 mitogen-activated protein kinase inhibitor, as well as inhibitors of cyclooxygenase and lipoxygenase. We used immunoneutralization of TLQP-21 to determine the function of the endogenous peptide in mechanisms underlying persistent pain. In mice injected intradermally with complete Freund adjuvant, intrathecal treatment with anti-TLQP-21 immediately prior to or 5hours after induction of inflammation dose-dependently inhibited tactile hypersensitivity and thermal hyperalgesia. Intrathecal anti-TL21 administration also attenuated the development and maintenance of tactile hypersensitivity in the spared nerve injury model of neuropathic pain. These results provide evidence that endogenous TLQP-21 peptide contributes to the mechanisms of spinal neuroplasticity after inflammation and nerve injury.


Asunto(s)
Hiperalgesia/metabolismo , Inflamación/metabolismo , Neuralgia/metabolismo , Neuropéptidos/metabolismo , Nocicepción/fisiología , Fragmentos de Péptidos/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Inhibidores de la Ciclooxigenasa/farmacología , Modelos Animales de Enfermedad , Adyuvante de Freund/envenenamiento , Calor , Hiperalgesia/inducido químicamente , Inflamación/inducido químicamente , Inyecciones Espinales , Inhibidores de la Lipooxigenasa/farmacología , Ratones , Factores de Crecimiento Nervioso , Nocicepción/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Nervio Peroneo/lesiones , Piel/efectos de los fármacos , Nervio Tibial/lesiones , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA