Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Mol Neurosci ; 17: 1444629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092202

RESUMEN

The Ca2+-dependent activator protein for secretion (CAPS/CADPS) family protein facilitates catecholamine release through the dense-core vesicle exocytosis in model neuroendocrine cell lines. However, it remains unclear if it induces dopamine release in the central neurons. This study aimed to examine the expression and function of CADPS2, one of the two CADPS paralogs, in dopamine neurons of the mouse midbrain. This study shows that CADPS2 was expressed in tyrosine hydroxylase and the vesicular monoamine transporter 2 (VMAT2)-positive dopaminergic neurons of the midbrain samples and primary mesencephalic cell cultures. Subcellular fractions rich in dopamine were collected using immunoaffinity for CADPS2 from midbrain protein extracts. Cell imaging using fluorescent false neurotransmitter FFN511 as a substrate for VMAT2 showed decreased activity-dependent dopamine release in Cadps2-deficient cultures, compared to that in wild-type cultures. These results suggest that CADPS2 is involved in dopamine release from the central neurons, indicating its involvement in the central dopamine pathway.

2.
J Neuroinflammation ; 21(1): 114, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698428

RESUMEN

Maternal immunoglobulin (Ig)G is present in breast milk and has been shown to contribute to the development of the immune system in infants. In contrast, maternal IgG has no known effect on early childhood brain development. We found maternal IgG immunoreactivity in microglia, which are resident macrophages of the central nervous system of the pup brain, peaking at postnatal one week. Strong IgG immunoreactivity was observed in microglia in the corpus callosum and cerebellar white matter. IgG stimulation of primary cultured microglia activated the type I interferon feedback loop by Syk. Analysis of neonatal Fc receptor knockout (FcRn KO) mice that could not take up IgG from their mothers revealed abnormalities in the proliferation and/or survival of microglia, oligodendrocytes, and some types of interneurons. Moreover, FcRn KO mice also exhibited abnormalities in social behavior and lower locomotor activity in their home cages. Thus, changes in the mother-derived IgG levels affect brain development in offsprings.


Asunto(s)
Animales Recién Nacidos , Encéfalo , Inmunoglobulina G , Ratones Noqueados , Animales , Ratones , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Femenino , Ratones Endogámicos C57BL , Embarazo , Células Cultivadas , Microglía/metabolismo , Receptores Fc/metabolismo , Receptores Fc/genética
3.
Proc Natl Acad Sci U S A ; 121(8): e2301449121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346189

RESUMEN

GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.


Asunto(s)
Habénula , Receptores de GABA-B , Animales , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Habénula/metabolismo , Astacoidea/metabolismo , Terminales Presinápticos/metabolismo , Cafeína , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
eNeuro ; 10(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37848288

RESUMEN

During the development of the cerebral cortex, N-cadherin plays a crucial role in facilitating radial migration by enabling cell-to-cell adhesion between migrating neurons and radial glial fibers or Cajar-Reztius cells. ADP ribosylation factor 4 (Arf4) and Arf5, which belong to the Class II Arf small GTPase subfamily, control membrane trafficking in the endocytic and secretory pathways. However, their specific contribution to cerebral cortex development remains unclear. In this study, we sought to investigate the functional involvement of Class II Arfs in radial migration during the layer formation of the cerebral cortex using mouse embryos and pups. Our findings indicate that knock-down of Arf4, but not Arf5, resulted in the stalling of transfected neurons with disorientation of the Golgi in the upper intermediate zone (IZ) and reduction in the migration speed in both the IZ and cortical plate (CP). Migrating neurons with Arf4 knock-down exhibited cytoplasmic accumulation of N-cadherin, along with disturbed organelle morphology and distribution. Furthermore, supplementation of exogenous N-cadherin partially rescued the migration defect caused by Arf4 knock-down. In conclusion, our results suggest that Arf4 plays a crucial role in regulating radial migration via N-cadherin trafficking during cerebral cortical development.


Asunto(s)
Cadherinas , Neuronas , Animales , Ratones , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Aparato de Golgi/metabolismo , Neuronas/metabolismo
5.
J Neuroinflammation ; 20(1): 11, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650518

RESUMEN

BACKGROUND: Ischemic stroke in white matter of the brain induces not only demyelination, but also neuroinflammation. Peripheral T lymphocytes, especially regulatory T cells (Tregs), are known to infiltrate into ischemic brain and play a crucial role in modulation of inflammatory response there. We previously reported that transplantation of vascular endothelial cells generated from human induced pluripotent stem cells (iVECs) ameliorated white matter infarct. The aim of this study is to investigate contribution of the immune system, especially Tregs, to the mechanism whereby iVEC transplantation ameliorates white matter infarct. METHODS: iVECs and human Tregs were transplanted into the site of white matter lesion seven days after induction of ischemia. The egress of T lymphocytes from lymph nodes was sequestered by treating the animals with fingolimod (FTY720). The infarct size was evaluated by magnetic resonance imaging. Immunohistochemistry was performed to detect the activated microglia and macrophages, T cells, Tregs, and oligodendrocyte lineage cells. Remyelination was examined by Luxol fast blue staining. RESULTS: iVEC transplantation reduced ED-1+ inflammatory cells and CD4+ T cells, while increased Tregs in the white matter infarct. Treatment of the animals with FTY720 suppressed neuroinflammation and reduced the number of both CD4+ T cells and Tregs in the lesion, suggesting the importance of infiltration of these peripheral immune cells into the lesion in aggravation of neuroinflammation. Suppression of neuroinflammation by FTY720 per se, however, did not promote remyelination in the infarct. FTY720 treatment negated the increase in the number of Tregs by iVEC transplantation in the infarct, and attenuated remyelination promoted by transplanted iVECs, while it did not affect the number of oligodendrocyte lineage cells increased by iVEC transplantation. Transplantation of Tregs together with iVECs into FTY720-treated ischemic white matter did not affect the number of oligodendrocyte lineage cells, while it remarkably promoted myelin regeneration. CONCLUSIONS: iVEC transplantation suppresses neuroinflammation, but suppression of neuroinflammation per se does not promote remyelination. Recruitment of Tregs by transplanted iVECs contributes significantly to promotion of remyelination in the injured white matter.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sustancia Blanca , Animales , Humanos , Sustancia Blanca/patología , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Linfocitos T Reguladores , Células Endoteliales , Enfermedades Neuroinflamatorias , Encéfalo/patología , Isquemia/patología , Infarto
6.
Front Mol Biosci ; 9: 1040237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419930

RESUMEN

The type 2 Ca2+-dependent activator protein for secretion (CAPS2/CADPS2) regulates dense-core vesicle trafficking and exocytosis and is involved in the regulated release of catecholamines, peptidergic hormones, and neuromodulators. CAPS2 is expressed in the pancreatic exocrine acinar cells that produce and secrete digestive enzymes. However, the functional role of CAPS2 in vesicular trafficking and/or exocytosis of non-regulatory proteins in the exocrine pancreas remains to be determined. Here, we analyzed the morpho-pathological indicators of the pancreatic exocrine pathway in Cadps2-deficient mouse models using histochemistry, biochemistry, and electron microscopy. We used whole exosome sequencing to identify CADPS2 variants in patients with chronic pancreatitis (CP). Caps2/Cadps2-knockout (KO) mice exhibited morphophysiological abnormalities in the exocrine pancreas, including excessive accumulation of secretory granules (zymogen granules) and their amylase content in the cytoplasm, deterioration of the fine intracellular membrane structures (disorganized rough endoplasmic reticulum, dilated Golgi cisternae, and the appearance of empty vesicles and autophagic-like vacuoles), as well as exocrine pancreatic cell injury, including acinar cell atrophy, increased fibrosis, and inflammatory cell infiltration. Pancreas-specific Cadps2 conditional KO mice exhibited pathological abnormalities in the exocrine pancreas similar to the global Cadps2 KO mice, indicating that these phenotypes were caused either directly or indirectly by CAPS2 deficiency in the pancreas. Furthermore, we identified a rare variant in the exon3 coding region of CADPS2 in a non-alcoholic patient with CP and showed that Cadps2-dex3 mice lacking CAPS2 exon3 exhibited symptoms similar to those exhibited by the Cadps2 KO and cKO mice. These results suggest that CAPS2 is critical for the proper functioning of the pancreatic exocrine pathway, and its deficiency is associated with a risk of pancreatic acinar cell pathology.

7.
Mol Brain ; 14(1): 90, 2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118975

RESUMEN

Homer is a postsynaptic scaffold protein, which has long and short isoforms. The long form of Homer consists of an N-terminal target-binding domain and a C-terminal multimerization domain, linking multiple proteins within a complex. The short form of Homer only has the N-terminal domain and likely acts as a dominant negative regulator. Homer2a, one of the long form isoforms of the Homer family, expresses with a transient peak in the early postnatal stage of mouse cerebellar granule cells (CGCs); however, the functions of Homer2a in CGCs are not fully understood yet. In this study, we investigated the physiological roles of Homer2a in CGCs using recombinant adenovirus vectors. Overexpression of the Homer2a N-terminal domain construct, which was made structurally reminiscent with Homer1a, altered NMDAR1 localization, decreased NMDA currents, and promoted the survival of CGCs. These results suggest that the Homer2a N-terminal domain acts as a dominant negative protein to attenuate NMDAR-mediated excitotoxicity. Moreover, we identified a novel short form N-terminal domain-containing Homer2, named Homer2e, which was induced by apoptotic stimulation such as ischemic brain injury. Our study suggests that the long and short forms of Homer2 are involved in apoptosis of CGCs.


Asunto(s)
Apoptosis , Cerebelo/citología , Proteínas de Andamiaje Homer/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Isquemia Encefálica/patología , Proteínas de Andamiaje Homer/química , Proteínas de Andamiaje Homer/genética , Ratones Endogámicos ICR , Modelos Biológicos , N-Metilaspartato/metabolismo , Dominios Proteicos , Isoformas de Proteínas/metabolismo
8.
Sci Rep ; 11(1): 8656, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883618

RESUMEN

Calcium-dependent activator protein for secretion 1 (CAPS1) is a key molecule in vesicular exocytosis, probably in the priming step. However, CAPS1's role in synaptic plasticity and brain function is elusive. Herein, we showed that synaptic plasticity and learning behavior were impaired in forebrain and/or hippocampus-specific Caps1 conditional knockout (cKO) mice by means of molecular, physiological, and behavioral analyses. Neonatal Caps1 cKO mice showed a decrease in the number of docked vesicles in the hippocampal CA3 region, with no detectable changes in the distribution of other major exocytosis-related molecules. Additionally, long-term potentiation (LTP) was partially and severely impaired in the CA1 and CA3 regions, respectively. CA1 LTP was reinforced by repeated high-frequency stimuli, whereas CA3 LTP was completely abolished. Accordingly, hippocampus-associated learning was severely impaired in adeno-associated virus (AAV) infection-mediated postnatal Caps1 cKO mice. Collectively, our findings suggest that CAPS1 is a key protein involved in the cellular mechanisms underlying hippocampal synaptic release and plasticity, which is crucial for hippocampus-associated learning.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Animales , Western Blotting , Proteínas de Unión al Calcio/metabolismo , Condicionamiento Clásico , Aprendizaje Discriminativo , Femenino , Hipocampo/metabolismo , Hipocampo/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Proteínas del Tejido Nervioso/metabolismo , Fracciones Subcelulares/metabolismo
9.
J Neurosci ; 41(20): 4524-4535, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33846232

RESUMEN

Ca2+-dependent activator protein for secretion 2 (CAPS2) regulates dense-core vesicle (DCV) exocytosis to facilitate peptidergic and catecholaminergic transmitter release. CAPS2 deficiency in mice has mild neuronal effects but markedly impairs social behavior. Rare de novo Caps2 alterations also occur in autism spectrum disorder, although whether CAPS2-mediated release influences social behavior remains unclear. Here, we demonstrate that CAPS2 is associated with DCV exocytosis-mediated release of the social interaction modulatory peptide oxytocin (OXT). CAPS2 is expressed in hypothalamic OXT neurons and localizes to OXT nerve projection and OXT release sites, such as the pituitary. Caps2 KO mice exhibited reduced plasma albeit increased hypothalamic and pituitary OXT levels, indicating insufficient release. OXT neuron-specific Caps2 conditional KO supported CAPS2 function in pituitary OXT release, also affording impaired social interaction and recognition behavior that could be ameliorated by exogenous OXT administered intranasally. Thus, CAPS2 appears critical for OXT release, thereby being associated with social behavior.SIGNIFICANCE STATEMENT The role of the neuropeptide oxytocin in enhancing social interaction and social bonding behavior has attracted considerable public and neuroscientific attention. A central issue in oxytocin biology concerns how oxytocin release is regulated. Our study provides an important insight into the understanding of oxytocin-dependent social behavior from the perspective of the CAPS2-regulated release mechanism.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Unión al Calcio/metabolismo , Exocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Oxitocina/metabolismo , Conducta Social , Animales , Hipotálamo/metabolismo , Ratones , Ratones Noqueados , Vesículas Secretoras/metabolismo
10.
Front Endocrinol (Lausanne) ; 12: 629100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708176

RESUMEN

Thyroid hormone (TH) plays important roles in the developing brain. TH deficiency in early life leads to severe developmental impairment in the hippocampus. However, the mechanisms of TH action in the developing hippocampus are still largely unknown. In this study, we generated 3,5,3'-tri-iodo-l-thyronine (T3)-free neuronal supplement, based on the composition of neuronal supplement 21 (NS21), to examine the effect of TH in the developing hippocampus using primary cultured neurons. Effects of TH on neurons were compared between cultures in this T3-free culture medium (-T3 group) and a medium in which T3 was added (+T3 group). Morphometric analysis and RT-qPCR were performed on 7, 10, and 14 days in vitro (DIV). On 10 DIV, a decreased dendrite arborization in -T3 group was observed. Such difference was not observed on 7 and 14 DIV. Brain-derived neurotrophic factor (Bdnf) mRNA levels also decreased significantly in -T3 group on 10 DIV. We then confirmed protein levels of phosphorylated neurotrophic tyrosine kinase type 2 (NTRK2, TRKB), which is a receptor for BDNF, on 10 DIV by immunocytochemistry and Western blot analysis. Phosphorylated NTRK2 levels significantly decreased in -T3 group compared to +T3 group on 10 DIV. Considering the role of BDNF on neurodevelopment, we examined its involvement by adding BDNF on 8 and 9 DIV. Addition of 10 ng/ml BDNF recovered the suppressed dendrite arborization induced by T3 deficiency on 10 DIV. We show that the lack of TH induces a developmental delay in primary hippocampal neurons, likely caused through a decreased Bdnf expression. Thus, BDNF may play a role in TH-regulated dendritogenesis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dendritas/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Hormonas Tiroideas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dendritas/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor trkB/metabolismo
11.
Mol Brain ; 14(1): 52, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712038

RESUMEN

The HapMap Project is a major international research effort to construct a resource to facilitate the discovery of relationships between human genetic variations and health and disease. The Ser19Stop single nucleotide polymorphism (SNP) of human phytanoyl-CoA hydroxylase-interacting protein-like (PHYHIPL) gene was detected in HapMap project and registered in the dbSNP. PHYHIPL gene expression is altered in global ischemia and glioblastoma multiforme. However, the function of PHYHIPL is unknown. We generated PHYHIPL Ser19Stop knock-in mice and found that PHYHIPL impacts the morphology of cerebellar Purkinje cells (PCs), the innervation of climbing fibers to PCs, the inhibitory inputs to PCs from molecular layer interneurons, and motor learning ability. Thus, the Ser19Stop SNP of the PHYHIPL gene may be associated with cerebellum-related diseases.


Asunto(s)
Cerebelo/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Polimorfismo de Nucleótido Simple , Células de Purkinje/ultraestructura , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas , Forma de la Célula , Codón de Terminación , Femenino , Técnicas de Sustitución del Gen , Proyecto Mapa de Haplotipos , Humanos , Interneuronas/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Aprendizaje , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Fibras Nerviosas/fisiología , Células de Purkinje/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Alineación de Secuencia , Homología de Secuencia de Aminoácido
12.
J Neurosci ; 39(32): 6339-6353, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31201232

RESUMEN

ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Axones/metabolismo , Trastornos del Movimiento/etiología , Canal de Sodio Activado por Voltaje NAV1.6/fisiología , Células de Purkinje/metabolismo , Temblor/etiología , Factores de Ribosilacion-ADP/deficiencia , Factores de Ribosilacion-ADP/genética , Potenciales de Acción , Animales , Dependovirus/genética , Electroencefalografía , Electromiografía , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Genotipo , Movimientos de la Cabeza , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos del Movimiento/metabolismo , Trastornos del Movimiento/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.6/deficiencia , Técnicas de Placa-Clamp , Transporte de Proteínas , Células de Purkinje/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Método Simple Ciego , Temblor/metabolismo , Temblor/fisiopatología
13.
Biochem Biophys Res Commun ; 509(2): 429-434, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30594389

RESUMEN

Appropriate synapse formation during development is necessary for normal brain function, and synapse impairment is often associated with brain dysfunction. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are key factors in regulating synaptic development. We previously reported that BDNF/NT-3 secretion was enhanced by calcium-dependent activator protein for secretion 2 (CADPS2). Although BDNF/NT-3 and CADPS2 are co-expressed in various brain regions, the effect of Cadps2-deficiency on brain region-specific BDNF/NT-3 levels and synaptic development remains elusive. Here, we show developmental changes of BDNF/NT-3 levels and we assess disruption of excitatory/inhibitory synapses in multiple brain regions (cerebellum, hypothalamus, striatum, hippocampus, parietal cortex and prefrontal cortex) of Cadps2 knockout (KO) mice compared with wild-type (WT) mice. Compared with WT, BDNF levels in KO mice were reduced in young/adult hippocampus, but increased in young hypothalamus, while NT-3 levels were reduced in adult cerebellum and young hippocampus, but increased in adult parietal cortex. Immunofluorescence of vGluT1, an excitatory synapse marker, and vGAT, an inhibitory synapse marker, in adult KO showed that vGluT1 was higher in the cerebellum and parietal cortex but lower in the hippocampus, whereas vGAT was lower in the hippocampus and parietal cortex compared with WT. Immunolabeling for both vGluT1 and vGAT was increased in the parietal cortex but vGAT was decreased in the cerebellum in adult KO compared with WT. These data suggest that CADPS2-mediated secretion of BDNF/NT-3 may be involved in development and maturation of synapses and in the balance between inhibitory and excitatory synapses.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas de Unión al Calcio/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neurotrofina 3/genética , Sinapsis/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/citología , Neurotrofina 3/metabolismo , Especificidad de Órganos , Lóbulo Parietal/citología , Lóbulo Parietal/crecimiento & desarrollo , Lóbulo Parietal/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Sinapsis/clasificación , Sinapsis/metabolismo , Transmisión Sináptica/genética , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
14.
Neurosci Lett ; 677: 65-71, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29689341

RESUMEN

Hippocampal mossy fibers (MFs) project from dentate gyrus granule cells onto the CA2-CA3 region. MF-mediated synaptic transmission plays an important role in hippocampal learning and memory. However, the molecular mechanisms underlying MF synaptic development and subsequent functional organization are not fully understood. We previously reported that calcium-dependent activator protein for secretion 2 (CADPS2, also known as CAPS2) regulates the secretion of dense-core vesicles (DCVs). Because CADPS2 is strongly expressed in MF terminals, we hypothesized that CADPS2 regulates the development and functional organization of MF synapses by controlling the secretion of DCVs and their contents. To test this, we compared the synaptic microstructures of hippocampal MF terminals in Cadps2 knockout (KO) mice and wild-type (WT) mice by electron microscopy (EM). On postnatal day 15 (P15), KO mice exhibited morphological abnormalities in MF boutons, including smaller bouton size, a larger number of DCVs and a smaller number of post-synaptic densities (PSDs), compared with WT mice. In adults (P56), MF boutons were larger in KO mice. Synaptic vesicles (SVs) were increased but with a lower density compared with the WT. Furthermore, the number of SVs was decreased near the active zone. Moreover, MF-innervated CA3 postsynapses in KO mice displayed aberrant structures at the postsynaptic density (PSD), with an increased number of PSDs (likely because of a larger number of perforated PSDs), compared with WT mice. Taken together, our findings suggest that CADPS2 plays a critical role in MF synaptic development and functional organization.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Fibras Musgosas del Hipocampo/crecimiento & desarrollo , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Animales , Proteínas de Unión al Calcio/genética , Masculino , Ratones Noqueados , Fibras Musgosas del Hipocampo/ultraestructura , Proteínas del Tejido Nervioso/genética , Sinapsis/ultraestructura
15.
Neurosci Lett ; 661: 121-125, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-28963059

RESUMEN

Hippocampal adult neurogenesis is observed in the subgranular zone of the dentate gyrus (DG), and is associated with hippocampal memory formation and several psychiatric disorders including autism spectrum disorder (ASD). Calcium-dependent activator protein for secretion 2 (CAPS2) is a candidate gene related to ASD, and is highly expressed in the hippocampal DG region, with Caps2 knockout (KO) mice exhibiting ASD-like behavior. Accordingly, CAPS2 is potentially associated with hippocampal adult neurogenesis, the relationship between CAPS2 and adult neurogenesis has not yet been investigated. Here, we determined whether deficit of the Caps2 gene affects hippocampal adult neurogenesis and maturation of newborn neurons. To induce adult neurogenesis, we used the environmental enrichment (EE) condition. Both wild-type (WT) and Caps2 KO mice were housed in control or EE conditions for 3 or 14days. Hippocampal levels of brain-derived neurotrophic factor (BDNF) can be used as a physiological EE conditioned marker, and were increased at 14days in the EE condition in both WT and KO mice. Newborn cells during control and EE conditions were labeled by BrdU, and the labeled cells co-immunostained with the immature and mature neuron markers, calretinin (CR) and NeuN. The ratio of CR/BrdU and NeuN/BrdU double positive cells to all of BrdU positive cells were significantly increased in WT mice housed in the EE condition for 14days compared with the control condition. Whereas KO mice in the EE condition showed no significant increase of newborn neurons. These findings suggest that CAPS2 deficiency strongly impairs hippocampal adult neurogenesis and maturation of newborn neurons.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Proteínas de Unión al Calcio/deficiencia , Diferenciación Celular/genética , Ambiente , Hipocampo/citología , Proteínas del Tejido Nervioso/deficiencia , Neurogénesis/genética , Animales , Trastorno del Espectro Autista/genética , Proteínas de Unión al Calcio/metabolismo , Giro Dentado/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Neurogénesis/fisiología , Neuronas/metabolismo
16.
PLoS One ; 12(3): e0173175, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28264072

RESUMEN

Very-KIND/Kndc1/KIAA1768 (v-KIND) is a brain-specific Ras guanine nucleotide exchange factor carrying two sets of the kinase non-catalytic C-lobe domain (KIND), and is predominantly expressed in cerebellar granule cells. Here, we report the impact of v-KIND deficiency on dendritic and synaptic growth in cerebellar granule cells in v-KIND knockout (KO) mice. Furthermore, we evaluate motor function in these animals. The gross anatomy of the cerebellum, including the cerebellar lobules, layered cerebellar cortex and densely-packed granule cell layer, in KO mice appeared normal, and was similar to wild-type (WT) mice. However, KO mice displayed an overgrowth of cerebellar granule cell dendrites, compared with WT mice, resulting in an increased number of dendrites, dendritic branches and terminals. Immunoreactivity for vGluT2 (a marker for excitatory presynapses of mossy fiber terminals) was increased in the cerebellar glomeruli of KO mice, compared with WT mice. The postsynaptic density around the terminals of mossy fibers was also increased in KO mice. Although there were no significant differences in locomotor ability between KO and WT animals in their home cages or in the open field, young adult KO mice had an increased grip strength and a tendency to exhibit better motor performance in balance-related tests compared with WT animals. Taken together, our results suggest that v-KIND is required for compact dendritic growth and proper excitatory synaptic connections in cerebellar granule cells, which are necessary for normal motor coordination and balance.


Asunto(s)
Encéfalo/metabolismo , Cerebelo/citología , Cerebelo/metabolismo , Dendritas/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas del Tejido Nervioso/genética , Desempeño Psicomotor , Animales , Axones/metabolismo , Biomarcadores , Potenciales Postsinápticos Excitadores , Factores de Intercambio de Guanina Nucleótido/química , Inmunohistoquímica , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/química , Especificidad de Órganos/genética , Sinapsis/metabolismo , Sinapsis/ultraestructura
17.
Neurosci Lett ; 639: 88-93, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28041965

RESUMEN

In the mouse cerebellum, Ca2+-dependent activator protein for secretion 2 (CADPS2, CAPS2) is involved in regulated secretion from dense-core vesicles (DCVs), which contain neuropeptides including brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). Capds2 knockout (KO) mice show impaired cerebellar development in addition to autistic-like behavioral phenotypes. To understand the molecular impact caused by loss of Capds2, we analyzed gene expression profiles in the Capds2 KO cerebellum using a GeneChip microarray and the KEGG Pathway database. Significant differential expression was observed in 1211 of 22,690 (5.34%) genes represented on the chip. The expression levels of exocytosis-related genes (Stx5a, Syt6), genes encoding secretory (Fgf2, Fgf4, Edn2) and synaptic proteins (Grin2b, Gabbr1), neurotrophin signaling-associated genes (Sos1, Shc1, Traf6, Psen2), and a gene for Rett syndrome (Mecp2) were significantly changed. Taken together, these results suggest that deregulated gene expression caused by loss of Capds2 may cause developmental deficits and/or pathological symptoms, resulting in autistic-like phenotypes.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Cerebelo/metabolismo , Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Bases de Datos Genéticas , Exocitosis/fisiología , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
PLoS One ; 11(11): e0166732, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27855200

RESUMEN

Opalin, a central nervous system-specific myelin protein phylogenetically unique to mammals, has been suggested to play a role in mammalian-specific myelin. To elucidate the role of Opalin in mammalian myelin, we disrupted the Opalin gene in mice and analyzed the impacts on myelination and behavior. Opalin-knockout (Opalin-/-) mice were born at a Mendelian ratio and had a normal body shape and weight. Interestingly, Opalin-/- mice had no obvious abnormalities in major myelin protein compositions, expression of oligodendrocyte lineage markers, or domain organization of myelinated axons compared with WT mice (Opalin+/+) mice. Electron microscopic observation of the optic nerves did not reveal obvious differences between Opalin+/+ and Opalin-/- mice in terms of fine structures of paranodal loops, transverse bands, and multi-lamellae of myelinated axons. Moreover, sensory reflex, circadian rhythm, and locomotor activity in the home cage, as well as depression-like behavior, in the Opalin-/- mice were indistinguishable from the Opalin+/+ mice. Nevertheless, a subtle but significant impact on exploratory activity became apparent in Opalin-/- mice exposed to a novel environment. These results suggest that Opalin is not critical for central nervous system myelination or basic sensory and motor activities under conventional breeding conditions, although it might be required for fine-tuning of exploratory behavior.


Asunto(s)
Conducta Animal , Mamíferos/metabolismo , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Animales , Astrocitos/metabolismo , Axones/metabolismo , Axones/ultraestructura , Peso Corporal , Encéfalo/metabolismo , Comunicación Celular , Diferenciación Celular , Conducta Exploratoria , Immunoblotting , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Proteínas de la Mielina/deficiencia , Vaina de Mielina/ultraestructura , Oligodendroglía/metabolismo , Oligodendroglía/patología , Nervio Óptico/metabolismo , Nervio Óptico/ultraestructura , Fenotipo , Especificidad de la Especie
19.
Sci Rep ; 6: 31540, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27545744

RESUMEN

Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3-CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neurotransmisores/genética , Vesículas Sinápticas/genética
20.
Neurosci Lett ; 617: 232-5, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26917099

RESUMEN

The Ca(2+)-dependent activator protein for secretion 1 (CAPS1) protein plays a regulatory role in the dense-core vesicle exocytosis pathway. To clarify the functions of this protein in the brain, we searched for novel interaction partners of CAPS1 by mass spectrometry. We identified a specific interaction of CAPS1 with septin family proteins. We also demonstrated that the C-terminal region of the CAPS1 protein binds to part of the deduced GTP-binding domain of septin proteins. It is possible that a tertiary complex of septin, CAPS, and syntaxin contributes to dense-core vesicle trafficking and exocytosis in neurons.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Septinas/metabolismo , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA