Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0293112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319925

RESUMEN

Cardiovascular diseases (CVD) also known as heart disease are now the leading cause of death in the world. This paper presents research for the design and creation of a fuzzy logic-based expert system for the prognosis and diagnosis of heart disease that is precise, economical, and effective. This system entails a fuzzification module, knowledge base, inference engine, and defuzzification module where seven attributes such as chest pain type, HbA1c (Haemoglobin A1c), HDL (high-density lipoprotein), LDL (low-density lipoprotein), heart rate, age, and blood pressure are considered as input to the system. With the aid of the available literature and extensive consultation with medical experts in this field, an enriched knowledge database has been created with a sufficient number of IF-THEN rules for the diagnosis of heart disease. The inference engine then activates the appropriate IF-THEN rule from the knowledge base and determines the output value using the appropriate defuzzification technique after the fuzzification module fuzzifies each input depending on the appropriate membership function. Moreover, the fusion of web-based technology makes it suitable and cost-effective for the prognosis of heart disease for a patient and then he can take his decision for addressing the problem based on the status of his heart. On the other hand, it can also assist a medical practitioner to reach a more accurate conclusion regarding the treatment of heart disease for a patient. The Mamdani inference method has been used to evaluate the results. The system is tested with the Cleveland dataset and cross-checked with the in-field dataset. Compared with the other existing expert systems, the proposed method performs 98.08% accurately and can make accurate decisions for diagnosing heart diseases.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Masculino , Humanos , Lógica Difusa , Sistemas Especialistas , Corazón
2.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36433326

RESUMEN

Modern wheelchairs, with advanced and robotic technologies, could not reach the life of millions of disabled people due to their high costs, technical limitations, and safety issues. This paper proposes a gesture-controlled smart wheelchair system with an IoT-enabled fall detection mechanism to overcome these problems. It can recognize gestures using Convolutional Neural Network (CNN) model along with computer vision algorithms and can control the wheelchair automatically by utilizing these gestures. It maintains the safety of the users by performing fall detection with IoT-based emergency messaging systems. The development cost of the overall system is cheap and is lesser than USD 300. Hence, it is expected that the proposed smart wheelchair should be affordable, safe, and helpful to physically disordered people in their independent mobility.


Asunto(s)
Personas con Discapacidad , Silla de Ruedas , Humanos , Gestos , Dedos , Redes Neurales de la Computación
3.
Inform Med Unlocked ; 26: 100741, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34549079

RESUMEN

Coronavirus (COVID-19) has been one of the most dangerous and acute deadly diseases across the world recently. Researchers are trying to develop automated and feasible COVID-19 detection systems with the help of deep neural networks, machine learning techniques, etc. In this paper, a deep learning-based COVID-19 detection system called COV-VGX is proposed that contributes to detecting coronavirus disease automatically using chest X-ray images. The system introduces two types of classifiers, namely, a multiclass classifier that automatically predicts coronavirus, pneumonia, and normal classes and a binary classifier that predicts coronavirus and pneumonia classes. Using transfer learning, a deep CNN model is proposed to extract distinct and high-level features from X-ray images in collaboration with the pretrained model VGG-16. Despite the limitation of the COVID-19 dataset, the model is evaluated with sufficient COVID-19 images. Extensive experiments for multiclass classifier have achieved 98.91% accuracy, 97.31% precision, 99.50% recall, 98.39% F1-score, while 99.37% accuracy, 98.76% precision, 100% recall, 99.38% F1-score for binary classifier. The proposed system can contribute a lot in diagnosing COVID-19 effectively in the medical field.

4.
Inform Med Unlocked ; 22: 100505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33363252

RESUMEN

Recently, coronavirus disease (COVID-19) has caused a serious effect on the healthcare system and the overall global economy. Doctors, researchers, and experts are focusing on alternative ways for the rapid detection of COVID-19, such as the development of automatic COVID-19 detection systems. In this paper, an automated detection scheme named EMCNet was proposed to identify COVID-19 patients by evaluating chest X-ray images. A convolutional neural network was developed focusing on the simplicity of the model to extract deep and high-level features from X-ray images of patients infected with COVID-19. With the extracted features, binary machine learning classifiers (random forest, support vector machine, decision tree, and AdaBoost) were developed for the detection of COVID-19. Finally, these classifiers' outputs were combined to develop an ensemble of classifiers, which ensures better results for the dataset of various sizes and resolutions. In comparison with other recent deep learning-based systems, EMCNet showed better performance with 98.91% accuracy, 100% precision, 97.82% recall, and 98.89% F1-score. The system could maintain its great importance on the automatic detection of COVID-19 through instant detection and low false negative rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA