Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biomed Pharmacother ; 169: 115927, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38006616

RESUMEN

Gastric cancer poses a significant health challenge, and exploring innovative therapeutic strategies is imperative. RNA interference (RNAi) has employed as an important therapeutic strategy for diseases by selectively targeting key pathways involved in diseases pathogenesis. Small interfering RNA (siRNA), a potent RNAi tool, possesses the capability to silence genes and downregulate their expression. This review provides a comprehensive examination of the potential applications of small interfering RNA (siRNA) and short hairpin RNA (shRNA), supplemented by an in-depth analysis of nanoscale delivery systems, in the context of gastric cancer treatment. The potential of siRNA to markedly diminish the proliferation and invasion of gastric cancer cells through the modulation of critical molecular pathways, including PI3K, Akt, and EMT, is highlighted. Besides, siRNA demonstrates its efficacy in inducing chemosensitivity in gastric tumor cells, thus impeding tumor progression. However, the translational potential of unmodified siRNA faces challenges, particularly in vivo and during clinical trials. To address this, we underscore the pivotal role of nanostructures in facilitating the delivery of siRNA to gastric cancer cells, effectively suppressing their progression and enhancing gene silencing efficiency. These siRNA-loaded nanoparticles exhibit robust internalization into gastric cancer cells, showcasing their potential to significantly reduce tumor progression. The translation of these findings into clinical trials holds promise for advancing the treatment of gastric cancer patients.


Asunto(s)
Nanopartículas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Neoplasias Gástricas/tratamiento farmacológico , Tratamiento con ARN de Interferencia , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Nanopartículas/química , Resistencia a Medicamentos , Sistemas de Liberación de Medicamentos
2.
Environ Res ; 225: 115673, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906270

RESUMEN

The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Humanos , Oro/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias/tratamiento farmacológico , Resistencia a Medicamentos
3.
Biomed Pharmacother ; 160: 114313, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738498

RESUMEN

Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Pulmonares , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Transducción de Señal , Pulmón/patología , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
4.
Prog Biophys Mol Biol ; 177: 207-228, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584761

RESUMEN

Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transición Epitelial-Mesenquimal/genética , Proliferación Celular
5.
J Cell Commun Signal ; 17(3): 423-443, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36367667

RESUMEN

Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.

6.
Pharmacol Res ; 185: 106475, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36202185

RESUMEN

Urological cancers are considered as life-threatening diseases around the world. Bladder cancer is one of the most malignant urological tumors with high mortality and morbidity. Bladder cancer is a heterogenous disease and genetic alterations have shown to be key players in regulating its progression. Although conventional therapies are somewhat beneficial in improving prognosis and survival, bladder cancer patients suffer from recurrence. MicroRNAs (miRNAs) are endogenous short RNA molecules that do not encode proteins and show dysregulated expression in human cancers. miRNAs are regulators of vital biological processes in cells such as proliferation, migration, differentiation and apoptosis. Dysregulation of miRNAs is observed in bladder cancer and they are used as biomarkers for diagnosis and prognosis of patients. LncRNAs and circRNAs are modulators of bladder cancer progression via miRNA expression regulation. Overexpression of onco-suppressor miRNAs impairs bladder cancer progression, while oncogenic miRNAs drive tumor progression. Glycolysis and EMT mechanisms are two important factors for proliferation and migration of bladder cancer that are modulated by miRNAs. Furthermore, miRNAs can affect STAT3 and Wnt/ß-catenin as instances of molecular factors in regulating bladder tumor progression. Bladder tumor response to drug therapy and radiotherapy is regulated by miRNAs. Hence, aim of current review is to provide function of miRNAs in bladder cancer based on their crosstalk with other molecular pathways and interaction with biological processes.


Asunto(s)
Fenómenos Biológicos , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Pronóstico , ARN Circular , Regulación Neoplásica de la Expresión Génica
7.
Biomed Pharmacother ; 155: 113774, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271556

RESUMEN

One of the malignant tumors in women that has involved both developed and developing countries is breast cancer. Similar to other types of tumors, breast cancer cells demonstrate high metastatic nature. Besides, breast tumor cells have ability of developing drug resistance. EMT is the related mechanism to cancer metastasis and focus of current manuscript is highlighting function of EMT in breast tumor malignancy and drug resistance. Breast tumor cells increase their migration by EMT induction During EMT, N-cadherin and vimentin levels increase, and E-cadherin levels decrease to mediate EMT-induced breast tumor invasion. Different kinds of anti-cancer agents such as tamoxifen, cisplatin and paclitaxel that EMT induction mediates chemoresistance feature of breast tumor cells. Furthermore, EMT induction correlates with radio-resistance in breast tumor. Clinical aspect is reversing EMT in preventing chemotherapy or radiotherapy failure in breast cancer patients and improving their survival time. The anti-tumor agents that suppress EMT can be used for decreasing breast cancer invasion and increasing chemosensitivity of tumor cells. Furthermore, lncRNAs, miRNAs and other factors can modulate EMT in breast tumor progression that are discussed here.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Vimentina , Cisplatino/farmacología , Transición Epitelial-Mesenquimal , ARN Largo no Codificante/farmacología , Línea Celular Tumoral , Cadherinas , Paclitaxel/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Medicamentos , Tamoxifeno/farmacología , MicroARNs/genética , MicroARNs/farmacología , Movimiento Celular
8.
Pharmacol Res ; 182: 106311, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716914

RESUMEN

Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-ß, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.


Asunto(s)
MicroARNs , Neoplasias , Línea Celular Tumoral , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
9.
J Cell Physiol ; 237(5): 2309-2344, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35437787

RESUMEN

The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Resistencia a Medicamentos , Resistencia a Antineoplásicos/genética , Humanos , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , ARN Circular/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética
10.
Life Sci ; 298: 120463, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35259354

RESUMEN

Gene therapy can be used as a cancer therapy by affecting signaling networks participating in the aggressive behavior of tumors. Small interfering RNA (siRNA) is a genetic tool employed for gene silencing. The siRNA molecules have a length of 21-22 nucleotides, and are synthetic, short non-coding RNAs. The siRNA molecule should be loaded into the RISC complex to carry out its function to degrade mRNA and reduce protein expression. By targeting oncogenic pathways, siRNA can also promote chemosensitivity and reduce resistance. Doxorubicin (DOX) is an anthracycline family member capable of triggering cell cycle arrest via binding to topoisomerase II and inhibiting DNA replication. The present review focuses on the design of siRNA for increasing DOX sensitivity and overcoming resistance. Molecular pathways such as STAT3, Notch1, Mcl-1 and Nrf2 can be down-regulated by siRNA to promote DOX sensitivity. Furthermore, siRNA can be used to suppress the activity of P-glycoprotein as a cell membrane transporter of drugs, leading to enhanced accumulation of DOX. The co-delivery of DOX and siRNA both incorporated into nanoparticles can increase the intracellular accumulation in cancer cells, and protect siRNA against degradation by enzymes. Furthermore, the circulation time of DOX is lengthened to boost cytotoxicity against cancer cells. The surface modification of nanocarriers with ligands such as RGD or folate increases their selectivity towards cancer cells. Moreover, smart nanostructures, including pH-, redox- and light-responsive are optimized for siRNA and DOX delivery and tumor treatment.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos/genética , Genes Relacionados con las Neoplasias , Humanos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Interferente Pequeño/genética
11.
Expert Opin Drug Deliv ; 19(4): 355-382, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35152815

RESUMEN

INTRODUCTION: The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED: The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer, GO-mediated photothermal therapy, and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION: GO nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Besides DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. DOX-loaded GO nanoparticles have demonstrated theranostic potential. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Nanopartículas , Neoplasias , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Oro , Grafito/química , Humanos , Nanocompuestos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico
12.
Expert Rev Mol Med ; 23: e13, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34583803

RESUMEN

The proliferation, metastasis and therapy response of tumour cells are tightly regulated by interaction among various signalling networks. The microRNAs (miRNAs) can bind to 3'-UTR of mRNA and down-regulate expression of target gene. The miRNAs target various molecular pathways in regulating biological events such as apoptosis, differentiation, angiogenesis and migration. The aberrant expression of miRNAs occurs in cancers and they have both tumour-suppressor and tumour-promoting functions. On the contrary, SOX proteins are capable of binding to DNA and regulating gene expression. SOX2 is a well-known member of SOX family that its overexpression in different cancers to ensure progression and stemness. The present review focuses on modulatory impact of miRNAs on SOX2 in affecting growth, migration and therapy response of cancers. The lncRNAs and circRNAs can function as upstream mediators of miRNA/SOX2 axis in cancers. In addition, NF-κB, TNF-α and SOX17 are among other molecular pathways regulating miRNA/SOX2 axis in cancer. Noteworthy, anti-cancer compounds including bufalin and ovatodiolide are suggested to regulate miRNA/SOX2 axis in cancers. The translation of current findings to clinical course can pave the way to effective treatment of cancer patients and improve their prognosis.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia , ARN Circular , Factores de Transcripción SOXB1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA