Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(19): 12477-12488, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38699877

RESUMEN

Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.


Asunto(s)
Hidrogeles , Nanofibras , Péptidos , Nanofibras/química , Péptidos/química , Hidrogeles/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Anisotropía , Animales
2.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352501

RESUMEN

Fibrous proteins that comprise the extracellular matrix (ECM) guide cellular growth and tissue organization. A lack of synthetic strategies able to generate aligned, ECM-mimetic biomaterials has hampered bottom-up tissue engineering of anisotropic tissues and led to a limited understanding of cell-matrix interactions. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical structures. We establish how modest changes in phosphate buffer concentration during peptide self-assembly can be used to tune their alignment and packing. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an ECM-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to generate a gradient of anisotropic nanofibrous hydrogels, which are used to better understand directed cell growth.

3.
Eur Phys J Plus ; 136(6): 675, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178567

RESUMEN

Viruses have threatened animal and human lives since a long time ago all over the world. Some of these tiny particles have caused disastrous pandemics that killed a large number of people with subsequent economic downturns. In addition, the quarantine situation itself encounters the challenges like the deficiency in the online educational system, psychiatric problems and poor international relations. Although viruses have a rather simple protein structure, they have structural heterogeneity with a high tendency to mutation that impedes their study. On top of the breadth of such worldwide worrying issues, there are profound scientific gaps, and several unanswered questions, like lack of vaccines or antivirals to combat these pathogens. Various detection techniques like the nucleic acid test, immunoassay, and microscopy have been developed; however, there is a tradeoff between their advantages and disadvantages like safety in sample collecting, invasiveness, sensitivity, response time, etc. One of the highly resolved techniques that can provide early-stage detection with fast experiment duration is plasmonics. This optical technique has the capability to detect viral proteins and genomes at the early stage via highly sensitive interaction between the biological target and the plasmonic chip. The efficiency of this technique could be proved using commercialized techniques like reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) techniques. In this study, we aim to review the role of plasmonic technique in the detection of 11 deadliest viruses besides 2 common genital viruses for the human being. This is a rapidly moving topic of research, and a review article that encompasses the current findings may be useful for guiding strategies to deal with the pandemics. By investigating the potential aspects of this technique, we hope that this study could open new avenues toward the application of point-of-care techniques for virus detection at early stage that may inhibit the progressively hygienic threats.

4.
ACS Omega ; 5(21): 12278-12289, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32548411

RESUMEN

Considering the large consumption of nicotine and its sedative/stimulant effect on different organs of the body, the detection of low concentration of this material and its subsequent effect on live animals plays a significant role. Optical detection techniques such as plasmonics are the pioneers in highly sensitive detection techniques. However, for investigating the nicotine/smoke effect on live cells, not only the interaction between cell nicotine should be optimized but also the plasmonic interface should show a high sensitivity to the reception of nicotine by the cell receptors. In this study, the sensitivity of the plasmonic detection system was greatly increased using the coupling of plasmon and fluorophore. This coupling could enhance the main plasmonic signal several orders of magnitude besides improving Δ and Ψ ellipsometry parameters. Benefiting from the green fluorescence proteins, the phase shift and the amplitude ratio between the reflections under s- and p-polarized light enhance considerably which verifies the coupling of the dipole of the fluorescence emitter and the plasmons of the metal nanostructure. For 1 s increase of the maintenance time, we encountered a considerable increase in the Δ values that were 0.15° for T e = 1 s and 0.24° for T e = 3 s. Benefiting from extracted ellipsometry parameters, this study could open new avenues toward studying the effect of various types of drugs and stimulants on biological samples using a novel plasmophore platform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA