Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 203: 638-649, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090944

RESUMEN

Polyhydroxybutyrate (PHB) is a non-toxic polyhydroxyalkanoate polymer produced by several microorganisms, widely used as a biological substitute for plastics derived from fossil hydrocarbons. In this work, PHB polymer has been tested in an animal model for colorectal cancer. In the animal model, PHB has been able to reduce the number of polyps by 48,1%, and the tumoral extension area by 58,1%. Also, PHB induces a selective increase in beneficial gut bacterial taxons in this animal model, and a selective reduction in pro-inflammatory taxons, demonstrating its value as a nutraceutical compound. This antitumor effect is caused by gut production of 3-hydroxybutyrate and butyrate. In this animal model, 3-hydroxybutyrate is also observed in plasma and in brain tissue, after PHB consumption, making PHB supplementation interesting as a bioactive compound in other extraintestinal conditions, as 3-hydroxybutyrate has been reported to enhance brain and cognitive function, cardiac performance, appetite suppression and diabetes. Therefore, PHB could be postulated as an interesting non-polysaccharide antitumor prebiotic, paving the way towards its future use in functional foods.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Polihidroxialcanoatos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Hidroxibutiratos/farmacología , Modelos Animales , Poliésteres , Ratas
2.
Nanomaterials (Basel) ; 10(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086532

RESUMEN

The interest for biodegradable electronic devices is rapidly increasing for application in the field of wearable electronics, precision agriculture, biomedicine, and environmental monitoring. Energy storage devices integrated on polymeric substrates are of particular interest to enable the large-scale on field use of complex devices. This work presents a novel class of eco-friendly supercapacitors based on biodegradable poly(3-hydroxybutyrrate) PHB, ionic liquids, and cluster-assembled gold electrodes. By electrochemical characterization, we demonstrate the possibility of tuning the supercapacitor energetic performance according to the type and amount of the ionic liquid employed. Our devices based on hydrophobic plastic materials are stable under cyclic operation and resistant to moisture exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA