RESUMEN
Fifty percent of the overall operational expenses of biorefineries are incurred during enzymatic-saccharification processes. Cellulases have a global-market value of $1621 USD. Dearth of conventional lignocelluloses have led to the exploration of their waste stream-based, unconventional sources. Native fungus-employing cellulase-production batches fail to yield sustained enzyme titers. It could be attributed to variations in the enzyme-production broth's quasi-dilatant behavior, its fluid and flow properties; heat and oxygen transfer regimes; kinetics of fungal growth; and nutrient utilization. The current investigation presents one of the first-time usages of a substrate mixture, majorly comprising disposed COVID-19 personal protective-equipment (PPE). To devise a sustainable and scalable cellulase-production process, various variable-regulated, continuous-culture auxostats were performed. The glucose concentration-maintaining auxostat recorded consistent endoglucanase titers throughout its feeding-cum-harvest cycles; furthermore, it enhanced oxygen transfer, heat transfer co-efficient, and mass transfer co-efficient by 91.5, 36, and 77%, respectively. Substrate-characterization revealed that an unintended, autoclave-based organsolv pretreatment caused unanticipated increases in endoglucanase titers. The cumulative lab-scale cellulase-production cost was found to be $16.3. The proposed approach is economical, and it offers a pollution-free waste management process, thereby generating carbon credits.
Asunto(s)
COVID-19 , Celulasa , Celulasas , Humanos , Celulasa/química , COVID-19/prevención & control , Celulasas/química , Calor , OxígenoRESUMEN
Biomass pretreatment incurs 40% of the overall cost of biorefinery operations. The usage of mushroom cultivation as a pretreatment/delignification technique, and bio-ethanol production from spent mushroom substrates, after subsequent pretreatment, saccharification and fermentation processes, have been reported earlier. However, the present pilot-scale, entirely-organic demonstration is one of the very first biorefinery models, which efficiently consolidates: biomass pretreatment; in-situ cellulase production and saccharification; mushroom cultivation, thereby improving the overall operational economy. During pretreatment, the oyster mushroom, Pluerotus florida VS-6, matures into distinct substrate mycelia and fruiting bodies. Consequential variations in the kinetics of growth, biomass degradation/substrate utilization, oxygen uptake and transfer rates, and enzyme production, have been analyzed. Signifying the first-time usage of a biomass mixture, comprising vegetative waste and e-commerce packaging waste, the 30 day-long, bio-economical, non-inhibitor-generating, catabolite repression-limited, solid-state in-situ pretreatment-cum-saccharification, resulted in: 78% lignin degradation; 13.25% soluble-sugar release; 18.25% mushroom yield; 0.88 FPU/g.ds cellulase secretion. The in-situ saccharified biomass, when sequentially subjected to ex-situ enzymatic hydrolysis and fermentation, showed 37.35% saccharification, and a bio-ethanol yield of 0.425 g per g of glucose, respectively. Apart from yielding engine-ready bio-ethanol, the model doubles as an agripreneurial proposition, and encourages mushroom cultivation and consumption.
Asunto(s)
Agaricales , Celulasa , Agaricales/metabolismo , Etanol/metabolismo , Carbohidratos , Hidrólisis , Celulasa/metabolismo , Fermentación , Biomasa , Lignina/metabolismoRESUMEN
This study has identified a new feedstock Chukrasia tabularis L. (C. tabularis) seed for the production of biodiesel. Oil was extracted from the seeds with and without autoclave-assisted ultrasonic homogenization (AUH) pretreatment using different solvents. The solvent n-hexane with AUH pretreatment yielded a maximum oil yield of 32 wt%. The kinetics and thermodynamics of the extraction process were studied in a batch. The data showed that extraction followed first-order kinetics with a rate constant of 1.4 × 10-4 min-1, activation energy of 63.604 kJ mol-1 and pre-exponential factors of 66.66 × 104 s-1. The physiochemical properties of the oil were determined from which it was identified that C. tabularis oil has high free fatty acid (FFA) content, requiring a single-step esterification cum transesterification reaction to produce biodiesel economically. The modified aryl diazonium salt reduction process was used to synthesize a heterogeneous acid catalyst (HAC) from activated carbon precursor and was used to catalyze biodiesel reaction. Furthermore, HAC was characterized by different analytical techniques and it was found that it had an acid site density of 1.02 mmol g-1 and a specific surface area of 602 m2 g-1. The parameters affecting the biodiesel process were studied to obtain a maximum biodiesel conversion of 98.5% at 6 wt% catalyst loading, 15:1 methanol to oil molar ratio, 120 min reaction time, 70 ºC reaction temperature, and 500 rpm stirring rate. Reusability studies were performed which showed that HAC can be recycled up to five cycles with a conversion above 90% in the fifth cycle. Moreover, the fuel properties of biodiesel were determined using standard methods and were compared with ASTM D6751 and EN14241 standards.
Asunto(s)
Biocombustibles , Aceites de Plantas , Biocombustibles/análisis , Aceites de Plantas/química , Cinética , Esterificación , Semillas/química , CatálisisRESUMEN
Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.
Asunto(s)
Asparaginasa/biosíntesis , Aspergillus/enzimología , Aspergillus/crecimiento & desarrollo , Algoritmos , Reactores Biológicos/microbiología , Fermentación , Concentración de Iones de Hidrógeno , Redes Neurales de la Computación , Temperatura , Factores de TiempoRESUMEN
Response surface methodology was employed to optimize the concentration of four important cultivation media components such as cottonseed oil cake, glucose, NH4Cl, and MgSO4 for maximum medicinal polysaccharide yield by Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum MTCC 1039 in submerged culture. The second-order polynomial model describing the relationship between media components and polysaccharide yield was fitted in coded units of the variables. The higher value of the coefficient of determination (R2 = 0.953) justified an excellent correlation between media components and polysaccharide yield, and the model fitted well with high statistical reliability and significance. The predicted optimum concentration of the media components was 3.0% cottonseed oil cake, 3.0% glucose, 0.15% NH4Cl, and 0.045% MgSO4, with the maximum predicted polysaccharide yield of 819.76 mg/L. The experimental polysaccharide yield at the predicted optimum media components was 854.29 mg/L, which was 4.22% higher than the predicted yield.