Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ann Clin Microbiol Antimicrob ; 23(1): 46, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790053

RESUMEN

BACKGROUND: Proteus mirabilis is an opportunistic pathogen that has been held responsible for numerous nosocomial and community-acquired infections which are difficult to be controlled because of its diverse antimicrobial resistance mechanisms. METHODS: Antimicrobial susceptibility patterns of P. mirabilis isolates collected from different clinical sources in Mansoura University Hospitals, Egypt was determined. Moreover, the underlying resistance mechanisms and genetic relatedness between isolates were investigated. RESULTS: Antimicrobial susceptibility testing indicated elevated levels of resistance to different classes of antimicrobials among the tested P. mirabilis clinical isolates (n = 66). ERIC-PCR showed great diversity among the tested isolates. Six isolates (9.1%) were XDR while all the remaining isolates were MDR. ESBLs and AmpCs were detected in 57.6% and 21.2% of the isolates, respectively, where blaTEM, blaSHV, blaCTX-M, blaCIT-M and blaAmpC were detected. Carbapenemases and MBLs were detected in 10.6 and 9.1% of the isolates, respectively, where blaOXA-48 and blaNDM-1 genes were detected. Quinolone resistant isolates (75.8%) harbored acc(6')-Ib-cr, qnrD, qnrA, and qnrS genes. Resistance to aminoglycosides, trimethoprim-sulfamethoxazole and chloramphenicol exceeded 80%. Fosfomycin was the most active drug against the tested isolates as only 22.7% were resistant. Class I or II integrons were detected in 86.4% of the isolates. Among class I integron positive isolates, four different gene cassette arrays (dfrA17- aadA5, aadB-aadA2, aadA2-lnuF, and dfrA14-arr-3-blaOXA-10-aadA15) and two gene cassettes (dfrA7 and aadA1) were detected. While class II integron positive isolates carried four different gene cassette arrays (dfrA1-sat1-aadA1, estXVr-sat2-aadA1, lnuF- dfrA1-aadA1, and dfrA1-sat2). CONCLUSION: P. Mirabilis ability to acquire resistance determinants via integrons may be held responsible for the elevated rates of antimicrobial resistance and emergence of XDR or even PDR strains limiting the available therapeutic options for management of infections caused by those strains.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Infecciones por Proteus , Proteus mirabilis , Egipto/epidemiología , Humanos , Proteus mirabilis/genética , Proteus mirabilis/efectos de los fármacos , Proteus mirabilis/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Proteus/microbiología , Infecciones por Proteus/epidemiología , Antibacterianos/farmacología , Prevalencia , beta-Lactamasas/genética , Integrones/genética , Proteínas Bacterianas/genética , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Masculino
2.
Microb Cell Fact ; 22(1): 166, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644606

RESUMEN

BACKGROUND: Pyocyanin is a secondary metabolite secreted by P. aeruginosa. It is a redox-active blue/green phenazine pigment that has various beneficial applications. The present study aims at screening the production of pyocyanin among clinical and environmental P. aeruginosa isolates in Dakahlya governorate, Egypt. Thereafter, large-scale production, purification, structure elucidation, and assessment of the biological activity of the highest pyocyanin producers were targeted. RESULTS: Pyocyanin from the highest clinical (PsC05) and environmental (PsE02) producers were subjected to large-scale production, followed by purification using silica gel column. Pyocyanin was characterized using TLC, UV-Vis, 1 H NMR, and FTIR spectroscopy to confirm its structure and purity. Purified pyocyanin showed remarkable antimicrobial efficacy against all tested food-borne pathogens, MDR/XDR clinically isolated bacteria and C. albicans. Furthermore, it showed a substantial effect on biofilm inhibition and eradication of pre-formed biofilm against strong biofilm producing bacterial pathogens. However, it had limited antibiofilm activity against C. albicans. Pyocyanin from PsC05 had higher antioxidant and radicals scavenging activity than that from PsE02 as determined by FRAP, DPPH, and ABTS assays. Likewise, pyocyanin from PsC05 was more active against tested cancer cell lines, especially human Breast Cancer (MCF-7) and Colorectal Carcinoma (HCT-116), than that from PsE02. More importantly, it showed minimal cytotoxicity to normal cells. CONCLUSIONS: P. aeruginosa clinical and environmental isolates produce pyocyanin pigment in varying amounts. Pyocyanin exhibits substantial anti-bacterial, and anti-fungal activity; thus, enhancing its medical applicability. It could be used to inhibit and/or eradicate biofilm from the surfaces of medical devices which is a chief source of nosocomial infections. Its antioxidant along with cytotoxic activity against cancer cell lines, make it a promising contender for use as a substitute for synthetic agents in cancer treatment.


Asunto(s)
Antioxidantes , Piocianina , Humanos , Antioxidantes/farmacología , Pseudomonas aeruginosa , Biopelículas , Bioensayo , Candida albicans
3.
Appl Microbiol Biotechnol ; 106(24): 8151-8167, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36401642

RESUMEN

Acinetobacter baumannii is considered as one of the most virulent and infectious organisms that have an increased ability to both evade host immune response and resist various classes of antibiotics, leading to life-threatening infections. Multiple virulence factors have been implicated in the high prevalence rate of A. baumannii in hospitalized and immunocompromised patients. Moreover, improper use of antibiotics has led to the emergence of extensive drug-resistant strains that urgently require alternative strategies to control this superbug. Unfortunately, the availability of a licensed vaccine against A. baumannii infections is still challenged by the vast diversity among A. baumannii strains. Here, we report the development of a novel pentavalent vaccine candidate composed of two recombinant proteins (Wza and YiaD) and a pool of capsular polysaccharides isolated from 3 clinical isolates. We tested this new vaccine in vivo in a mouse model of peritonitis against the standard strain ATCC 19606 in addition to 3 clinical isolates of A. baumannii. Immunization with this vaccine completely protected the challenged mice with 100% survival rate in the case of all the tested bacteria. Further clinical studies are urgently needed to evaluate the efficacy and safety of this proprietary vaccine to protect patients from A. baumannii lethal infections. KEY POINTS: • Recombinant proteins pool (Wza and YiaD) immunization led to a synergistic immune response. • Capsular polysaccharides pool induced up to 90% protection of tested clinical isolates. • The pentavalent pool showed superiority with 100% survival of immunized mice.


Asunto(s)
Acinetobacter baumannii , Ratones , Animales , Vacunas Combinadas
4.
Appl Microbiol Biotechnol ; 106(21): 7223-7234, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36178514

RESUMEN

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated proteins) systems are considered as acquired immune mechanisms in Gram-positive and Gram-negative bacteria and also in archaea. They provide resistance/immunity to attacking bacteriophages or mobile genetic elements as integrative conjugative elements (ICE) as well as plasmid transformation. As an opportunistic pathogen, Pseudomonas aeruginosa has been held responsible for serious infections especially in hospitalized and immunocompromised patients. Three subtypes of type I CRISPR system (I-C, I-E, & I-F1) have been detected in P. aeruginosa genomes. In this work, P. aeruginosa isolates were collected from different clinical sources, and the three CRISPR/Cas subtypes (I-C, I-E, & I-F1) were detected via singleplex and multiplex PCR techniques using novel universal primers that were designed specifically in this study. CRISPR subtypes I-C, I-E, and I-F1 were detected in 10, 9, and 13 isolates, respectively. Furthermore, antimicrobial susceptibility of CRISPR/Cas-positive and negative isolates to different antibiotics and the capacity of biofilm formation were detected using disc diffusion method and tissue culture plate method, respectively. There was a significant correlation between the presence/absence of CRISPR/Cas system and both antimicrobial susceptibility to some antibiotics and biofilm-forming capacity among P. aeruginosa clinical isolates. KEY POINTS: • A novel multiplex-PCR for detection of CRISPR/Cas-positive strains of P. aeruginosa. • Understand the correlation between CRISPR/Cas systems and other characters of P. aeruginosa. • Correlation between antimicrobial susceptibility and CRISPR systems in P. aeruginosa.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Humanos , Pseudomonas aeruginosa/genética , Sistemas CRISPR-Cas , Antibacterianos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Proteínas Asociadas a CRISPR/genética , Bacteriófagos/genética , Farmacorresistencia Microbiana , Reacción en Cadena de la Polimerasa
5.
Appl Microbiol Biotechnol ; 106(3): 1279-1298, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35050388

RESUMEN

Escherichia coli is a multifaceted microbe since some are commensals, normally inhabiting the gut of both humans and animals while others are pathogenic responsible for a wide range of intestinal and extra-intestinal infections. It is one of the leading causes of septicemia, neonatal meningitis, urinary tract infections (UTIs), cystitis, pyelonephritis, and traveler's diarrhea. The present study aims to survey the distribution and unravel the association of phylotypes, virulence determinants, and antimicrobial resistance of E. coli isolated from different clinical sources in Mansoura hospitals, Egypt. One hundred and fifty E. coli isolates were collected from different clinical sources. Antimicrobial resistance profile, virulence determinants, and virulence encoding genes were detected. Moreover, phylogenetic and molecular typing using ERIC-PCR analysis was performed. Our results have revealed that phylogroup B2 (26.67%) with the greatest content in virulence traits was the most prevalent phylogenetic group. Different virulence profiles and varying incidence of virulence determinants were detected among tested isolates. High rates of resistance to different categories of antimicrobial agents, dramatic increase of MDR (92.67%), and emergence of XDR (4%) were detected. ERIC-PCR analysis revealed great diversity among tested isolates. There was no clustering of isolates according to resistance, virulence patterns, or phylotypes. Our research has demonstrated significant phylogenetic diversity of E. coli isolated from different clinical sources in Mansoura hospitals, Dakahlia governorate, Egypt. E. coli isolates are equipped with various virulence factors which contribute to their pathogenesis in human. The elevated rates of antimicrobial resistance and emergence of MDR and XDR mirror the trend detected globally in recent years. KEY POINTS: • Clinical E. coli isolates exhibited substantial molecular and phylogenetic diversity. • Elevated rates of antimicrobial resistance and emergence of XDR in pathogenic E. coli. • B2 Phylogroup with the highest VS was the most prevalent among pathogenic E. coli.


Asunto(s)
Infecciones por Escherichia coli , Preparaciones Farmacéuticas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Diarrea , Egipto/epidemiología , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Humanos , Filogenia , Viaje , Virulencia , Factores de Virulencia/genética
6.
Infect Drug Resist ; 12: 1113-1125, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118713

RESUMEN

INTRODUCTION: Enterococci commonly inhabit the gastrointestinal tract of both human and animals; however, they have emerged as a leading cause of several infections with substantial morbidity and mortality. Their ability to acquire resistance combined with intrinsic resistance to various antimicrobials makes treatment of enterococcal infections challenging. MATERIALS AND METHODS: The aim of the study was to evaluate the antimicrobial resistance pattern, and assess the prevalence of multidrug resistance (MDR) and extensive drug resistance (XDR) among enterococcal isolates, collected from different clinical sources, in Mansoura University Hospitals, Egypt. RESULTS: Antibiotic sensitivity testing revealed elevated levels of resistance among enterococcal clinical isolates (N=103). All E. faecium (N=32) and 74.6% of E. faecalis isolates(N=71) were MDR, while two E. faecalis and four E. faecium isolates were XDR. High level gentamicin resistance was detected in 79.6%, most of them carried the aac(6')-Ie-aph(2'')-Ia gene. High level streptomycin resistance was seen in 36.9%, of which 52.6% carried the ant(6')-Ia gene. Resistance to macrolides and lincosamides were mediated by ermB (92.2%) and msrA/B (42.7%). tetK, tetL, andtetM genes were detected among tetracyclines resistant isolates. Resistance to vancomycin was detected in 15.5%, where vanB and vanC1 gene clusters were detected in VRE isolates. Ten isolates (9.7%) were resistant to linezolid, eight of which harbored the optrA gene. Vancomycin and linezolid resistant enterococci were more likely to exhibit strong/moderate biofilm formation than vancomycin and linezolid sensitive ones. CONCLUSION: Elevated levels of resistance to different classes of antimicrobial agents and emergence of MDR and XDR strains pose a major threat with limited therapeutic options for infections caused by this emerging pathogen.

7.
Microb Drug Resist ; 25(6): 880-889, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30811265

RESUMEN

Background: Although Enterococci compromise an essential part of normal gut microbiota of both animals and humans, they have emerged as a leading opportunistic pathogen causing infections. The pathogenesis of enterococci is attributed to an array of virulence determinants. Objectives: This study aims to explore the prevalence and characteristics of enterococcal clinical isolates collected from Mansoura University Hospitals, Egypt, assess their ability to form biofilm, and the correlation with virulence determinants and antimicrobial resistance. Materials and Methods: A total of 70 Enterococcal clinical isolates were collected from different clinical sources between June and December 2016. Biofilm formation capacity was assessed, and characterization of virulence factors and antibiotic susceptibility was performed. Clonal relatedness between isolates was assessed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) approach. Results and Conclusion: The molecular analysis demonstrated high genetic diversity among enterococcal clinical isolates. The gelE was the most frequently detected gene (91.4%), followed by asa1 (70%), esp (65.7%), and cylA (17.1%), while hyl was not detected in any isolate. Gelatinase activity was detected in 35.7%, while hemolysin and lipase activity was detected in 12.9% and 78.5%, respectively. Most of the enterococcal isolates were biofilm producers, of which 67.1% were strong/moderate biofilm producers. All linezolid-resistant isolates exhibited strong/moderate biofilm formation capacity. Strong/moderate biofilm formation was more frequently observed among esp-positive (esp+) and gelatinase nonproducing (gelatinase-) enterococcal isolates. Multiple regression analysis denoted that esp (odds ratio [OR] 5.371, p = 0.003) and gelatinase production (OR 0.264, p = 0.015) were associated with strong/moderate biofilm formation capacity. These findings suggest that esp gene positivity and gelatinase production may affect biofilm formation capacity among enterococcal clinical isolates.


Asunto(s)
Enterococcus/genética , Enterococcus/aislamiento & purificación , Factores de Virulencia/genética , Virulencia/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Egipto , Enterococcus/efectos de los fármacos , Gelatinasas/genética , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Proteínas Hemolisinas/genética , Humanos , Incidencia , Pruebas de Sensibilidad Microbiana/métodos
8.
Microb Drug Resist ; 25(4): 480-488, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30394846

RESUMEN

The increasing number of carbapenem-resistant Acinetobacter baumannii clinical isolates is a major concern, which restricts therapeutic options for treatment of serious infections caused by this emerging pathogen. The aim of this work is to assess the antimicrobial resistance profile and identify the molecular mechanisms involved in carbapenem resistance in A. baumannii isolated from different clinical sources in Mansoura University Hospitals, Egypt. Antimicrobial susceptibility testing has shown that resistance to carbapenem has dramatically increased (98%) with concomitant elevated levels of resistance to quinolones, trimethoprim/sulfamethoxazole, and aminoglycosides. Polymyxin B and colistin are considered the last resort. Random amplified polymorphic DNA (RAPD) typing method revealed great diversity among A. baumannii isolates. Coexistence of diverse intrinsic and acquired carbapenem-hydrolyzing ß-lactamases has been detected in the tested isolates: Ambler class A: blaKPC (56%) and blaGES (48%), and Ambler class B: blaNDM (30%), blaSIM (28%), blaVIM (20%), and blaIMP (10%). Most isolates (94%) carried blaOXA-23-like and blaOXA-51-like simultaneously. blaOXA-23-like was preceded by ISAba1 providing a potent promoter activity for its expression. Sequencing analysis revealed that ISAba1 has been also inserted in carbapenem resistance-associated outer membrane protein (OMP) (carO) gene in three isolates, two of which were clonal based on RAPD typing, leading to interruption of its expression as confirmed by SDS-PAGE analysis of OMP fractions. Carbapenem resistance genes are widely distributed among A. baumannii clinical isolates from different clinical sources. Therefore, enhanced infection control measures, effective barriers, and rational use of antimicrobials should be enforced in hospitals for minimizing the widespread resistance to carbapenems and all other antibiotics.


Asunto(s)
Acinetobacter baumannii/genética , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Infección Hospitalaria/microbiología , Egipto , Genes Bacterianos/genética , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Epidemiología Molecular/métodos , Prevalencia , Resistencia betalactámica/genética , beta-Lactamasas/genética
9.
World J Microbiol Biotechnol ; 34(12): 189, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30511216

RESUMEN

Acinetobacter baumannii is an opportunistic pathogen that has been held responsible for a lot of infections worldwide. Infections caused by this pathogen are difficult to control because of the widespread of antimicrobial resistance mechanisms. The aim of the present study is to assess the prevalence of extended spectrum ß-lactamases (ESBLs) and AmpC ß-lactamases among isolates of A. baumannii collected from different clinical sources in Mansoura University Hospitals, Egypt. Antimicrobial susceptibility testing has demonstrated elevated resistance level to ß-lactams, quinolones and aminoglycosides. All isolates were sensitive to colistin and polymyxin B. ESBL activity was detected in 86% of the isolates. Among the tested ESBL encoding genes, blaTEM gene was the most prevalent gene as it was detected in 52% of the isolates. While blaPER, blaSHV and blaVEB were detected in 12%, 4%, and 2%, respectively. AmpC activity and blaADC gene were detected in 90% of the tested isolates. Insertion sequence ISAba1 was located 9 bp upstream of blaADC gene in 88.9% of the ADC-expressing isolates providing a potent promoter activity for its expression. To our knowledge this is the first report of loss of intrinsic ADC activity, in 10% of the tested isolates, as a result of insertional inactivation by an element belonging to IS5 family transposase. Co-expression of both ESBLs and AmpC ß-lactamases was detected in 78% of the isolates. The study demonstrates high prevalence of resistance to ß-lactam antibiotics through ESBLs and AmpC ß-lactamases production among A. baumannii clinical isolates. Prevalence of ß-lactamases should be detected routinely and reported in hospitals to avoid inappropriate use of antibiotics and therapeutic failure.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/metabolismo , Cefalosporinas/farmacología , beta-Lactamasas/metabolismo , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Aminoglicósidos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Elementos Transponibles de ADN/genética , Egipto , Genes Bacterianos/genética , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Tipificación Molecular , Resistencia betalactámica/genética , beta-Lactamasas/genética , beta-Lactamasas/aislamiento & purificación , beta-Lactamas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA