Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Curr Res Transl Med ; 72(3): 103443, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447269

RESUMEN

BACKGROUND: One of the prominent causes of chronic liver disease worldwide is the hepatitis C virus (HCV). HCV believed that innate immunity contributes to a sustained virological response (SVR) to the treatment of Sofosbuvir (SOF) (+) Daclatasvir (DCV) (+) Ribavirin (RBV). This study aimed to evaluate the impact of SOF (+) DCV (+) RBV therapy and persistent HCV infection on the subset of natural killer cells (NK) in HCV genotype four patients from Egypt. MATERIALS AND METHODS: One hundred and ten patients with persistent HCV infections requiring SOF (+) DCV (+) RBV therapy were grouped, and a flow cytometry (FCM) study of the NK cell subset in peripheral blood was performed. The assessment was performed before and after three and/or six months of the cessation of viral suppression therapy when a patient had a long-term viral response (SVR). One hundred and ten volunteers from the National Liver Institute's (NLI) blood bank were selected as controls. RESULTS: Patients with chronic HCV infection before therapy had considerably lower CD16+ and CD3- CD56+ cells than controls. Their levels increase during SOF (+) DCV (+) RBV therapy. In patients with SVR during treatment, CD16+ and CD3- CD56+ cells increased significantly compared to those who did not get SVR. Furthermore, CD56+ cells were significantly higher in patients with persistent infection before treatment than controls but diminished with the response to treatment. CONCLUSION: NK cell activation following SOF (+) DCV (+) RBV therapy and polarization to cytotoxicity occurred early in HCV antiviral therapy and was elevated in the respondents. Our data illustrated that establishing an inhibitory cytotoxic NK profile is related to therapeutic outcomes.

3.
Biol Trace Elem Res ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968492

RESUMEN

Titanium dioxide nanoparticles (TiO2-NPs) are one of the most popular nanoscale materials and have a wide range of applications in the manufacturing industry; nonetheless, researchers' focus has been directed to the detrimental consequences of TiO2-NPs. The current study was designed to assess the potential hazardous effects of chemically synthesized TiO2-NPs on the placenta and feto-maternal kidneys of rats. On the other hand, the probable positive impact of TiO2-NPs made after green synthesis was also evaluated. HepG2 cell lines were used to assess the cytotoxicity of chemical and green TiO2-NPs. Five groups of fifty pregnant female rats were formed (n=10). The first (control) group received distilled water. The second and third groups were orally given 100 and 300 mg/kg body weight (bw) of chemical TiO2-NPs, respectively. The fourth and fifth groups were orally given 100 and 300 mg/kg bw of green synthesized TiO2-NPs, respectively. On gestational day 20 (GD 20), blood and tissues were collected for biochemical and histological studies. Our findings revealed that chemical TiO2-NPs induced apoptosis in HepG2 cells at high concentrations, while there was no observed toxicity for green TiO2-NPs. The chemically treated TiO2-NPs groups showed a significant decrease in the level of HDL and a significant increase in cholesterol, LDL-cholesterol, and triglyceride levels. Renal tissues showed necrosis with exfoliation of lining epithelial cells, degenerated tubules, and glomerulonephritis. While the placenta was atrophied and hyalinized. Moreover, Bax expression significantly increased in the renal tubular cells and the villi of the placenta. Contrariwise, green TiO2-NPs-treated groups showed a significant rise in HDL levels with a significant reduction in triglycerides and LDL levels, while cholesterol levels were unaffected. Also, renal tissues showed mild degenerative changes in the glomeruli and renal tubules; thus, noticeable regeneration of epithelium lining tubules was detected in the maternal kidney. Bax showed a minimal reaction in the renal tubules and the villi of the placenta. It concluded that in contrast to chemical TiO2-NPs, biosynthesized TiO2-NPs with garlic showed a positive impact on the biochemical profile and histological investigations.

5.
Microsc Microanal ; 29(3): 1178-1189, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749685

RESUMEN

Wounds can be a result of surgery, an accident, or other factors. There is still a challenge to find effective topical wound-healing agents. This study aims to investigate the wound-healing activity of chemical and green synthesized chitosan nanoparticles (Ch-NPs) using Lawsonia inermis leaves extract. The nanoparticles were morphologically and chemically characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and high-resolution transmission electron microscopy (HRTEM). Forty-five adult female albino rats were randomly divided into three groups. The cutaneous surgical wounds were topically treated with 0.9% normal saline (control group), green Ch-NPs (second group), and chemical Ch-NPs gels (third group), respectively. The clinical picture of wounds and histopathological changes were assessed on the 3rd, 7th, 14th, and 21st days post-treatment. X-ray diffraction analysis revealed great crystallinity and purity of nanoparticles. The studied nanoparticles increased the wound contraction percent (WC%), reduced healing time and wound surface area (WSA), and these results were backed up by histological findings that indicated improved epithelialization, dermal differentiation, collagen deposition, and angiogenesis in treated rats compared with control rats (p < 0.05). We concluded that the wound-healing effects of the studied nanoparticles are encouraging, and further studies for complete assessment are still needed.


Asunto(s)
Quitosano , Lawsonia (Planta) , Nanopartículas , Femenino , Animales , Ratas , Cicatrización de Heridas , Etanol , Extractos Vegetales/farmacología
6.
Vet World ; 16(8): 1636-1646, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37766716

RESUMEN

Background and Aim: Several strains of Aspergillus fumigatus produce mycotoxins that affect the health and productivity of dairy cattle, and their presence in dairy cattle feed is a serious concern. This study aimed to determine the densities of A. fumigatus and gliotoxin in commercial dairy feed. Materials and Methods: More than 60 dairy feed samples were examined for fungal contamination, specifically for A. fumigatus, using phenotypic approaches and DNA sequencing of the internal transcribed spacer (ITS) and ß-tubulin regions. Thin-layer chromatography and high-performance liquid chromatography (HPLC) were used to assess gliotoxin production in A. fumigatus. Real-time polymerase chain reaction (RT-PCR) was used to investigate the expression of gliZ, which was responsible for gliotoxin production. High-performance liquid chromatography was used to detect gliotoxin in feed samples. Results: Aspergillus was the most commonly identified genus (68.3%). Aspergillus fumigatus was isolated from 18.3% of dairy feed samples. Only four of the 11 A. fumigatus isolates yielded detectable gliotoxins by HPLC. In total, 7/11 (43.7%) feed samples tested had gliotoxin contamination above the threshold known to induce immunosuppressive and apoptotic effects in vitro. The HPLC-based classification of isolates as high, moderate, or non-producers of gliotoxin was confirmed by RT-PCR, and the evaluation of gliZ expression levels corroborated this classification. Conclusion: The identification of A. fumigatus from animal feed greatly depended on ITS and ß-tubulin sequencing. Significant concentrations of gliotoxin were found in dairy cattle feed, and its presence may affect dairy cow productivity and health. Furthermore, workers face contamination risks when handling and storing animal feed.

7.
Immun Inflamm Dis ; 11(9): e1020, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37773723

RESUMEN

INTRODUCTION: The novel coronavirus infectious disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a gigantic problem. The lung is the major target organ of SARS-CoV-2 and some of its variants like Delta and Omicron variant adapted in such a way that these variants can significantly damage this vital organ of the body. These variants raised a few eyebrows as the outbreaks have been seen in the vaccinated population. Patients develop severe respiratory illnesses which eventually prove fatal unless treated early. MAIN BODY: Studies have shown that SARS-CoV-2 causes the release of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1ß and tumor necrosis factor (TNF)-α which are mediators of lung inflammation, lung damage, fever, and fibrosis. Additionally, various chemokines have been found to play an important role in the disease progression. A plethora of pro-inflammatory cytokines "cytokine storm" has been observed in severe cases of SARS-CoV-2 infection leading to acute respiratory distress syndrome (ARDS) and pneumonia that may prove fatal. To counteract cytokine storm-inducing lung inflammation, several promising immunomodulatory approaches are being investigated in numerous clinical trials. However, the benefits of using these strategies should outweigh the risks involved as the use of certain immunosuppressive approaches might lead the host susceptible to secondary bacterial infections. CONCLUSION: The present review discusses promising immunomodulatory approaches to manage lung inflammation in COVID-19 cases which may serve as potential therapeutic options in the future and may prove lifesaving.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Citocinas , Interleucina-6
9.
Lancet ; 402(10398): 287-288, 2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481266
11.
J Med Virol ; 95(5): e28775, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212310

RESUMEN

Mpox is a viral zoonotic disease endemic in Central and West Africa that is caused by the Mpox virus, which belongs to the Orthopoxvirus genus and Poxviridae family. The clinical manifestations of mpox infection are milder than those of smallpox, and the incubation time of mpox varies from 5 to 21 days. Since May 2022, the mpox outbreak (formerly known as monkeypox) has suddenly and unexpectedly spread in non-endemic countries, suggesting that there may have been some undetected transmissions. Based on molecular analysis, there are two major genetic clades that represent the mpox virus: Clade I (formerly the Congo Basin clade OR the Central African clade) and Clade II (formerly the West African clade). It is believed that people who are asymptomatic or paucisymptomatic may spread the mpox virus. Infectious viruses cannot be distinguished by PCR testing; therefore, virus culture should be carried out. Recent evidence regarding the detection of the mpox virus (Clade IIb) in air samples collected from the patient's environment during the 2022 mpox outbreak was reviewed. Further studies are needed to evaluate the extent to which the presence of mpox virus DNA in the air could affect immunocompromised patients in healthcare facilities, and further epidemiological studies are crucial, especially in Africa.


Asunto(s)
Microbiología del Aire , Monkeypox virus , Mpox , Humanos , África Occidental/epidemiología , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación , África Central/epidemiología
13.
Lancet ; 401(10381): 997-999, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36965970
17.
Environ Sci Pollut Res Int ; 30(19): 55455-55470, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36892697

RESUMEN

Titanium dioxide nanoparticles (TiO2 NPs) are one of the various nanoparticles that have been increasingly commonly used in vital sectors. This study was aimed at evaluating the effects of prenatal exposure to the chemical TiO2 NPs (CHTiO2 NPs) and green-synthesized TiO2 NPs (GTiO2 NPs) on immunological and oxidative status as well as lungs and spleen. Fifty pregnant female albino rats were divided into five groups of ten rats each: control, CHTiO2 NPs-treated groups orally received 100 and 300 mg/kg CHTiO2 NPs, and GTiO2 NPs-treated groups received 100 and 300 mg/kg GTiO2 NPs, respectively, daily for 14 days. The serum level of proinflammatory cytokines IL-6, oxidative stress markers (MDA and NO), and antioxidant biomarkers (SOD and GSH-PX) were assayed. Spleen and lungs were collected from pregnant rats and fetuses for histopathological examinations. The results showed a significant increase in IL-6 levels in treated groups. In the CHTiO2 NPs-treated groups, there was a significant increase in MDA activity and a significant decrease in GSH-Px and SOD activities, revealing its oxidative effect, while GSH-Px and SOD activities significantly increased in the 300 GTiO2 NPs-treated group, confirming the antioxidant effect of green-synthesized TiO2 NPs. Histopathological findings of the spleen and lungs of the CHTiO2 NPs-treated group revealed severe congestion and thickening of the blood vessels, while those of the GTiO2 NPs-treated group revealed mild tissue alterations. It could be deduced that green synthesized titanium dioxide nanoparticles have immunomodulatory and antioxidant effects on pregnant female albino rats and their fetuses, with an ameliorated impact on the spleen and lung compared to chemical titanium dioxide nanoparticles.


Asunto(s)
Antioxidantes , Nanopartículas , Embarazo , Femenino , Ratas , Humanos , Antioxidantes/metabolismo , Interleucina-6 , Titanio/toxicidad , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Feto/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA