Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 83(12): 2045-2058.e9, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37192628

RESUMEN

Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts and DNM1L/Drp1 in mammals, are dispensable for mitophagy. Here, we identify Atg44 as a mitochondrial fission factor that is essential for mitophagy in yeasts, and we therefore term Atg44 and its orthologous proteins mitofissin. In mitofissin-deficient cells, a part of the mitochondria is recognized by the mitophagy machinery as cargo but cannot be enwrapped by the autophagosome precursor, the phagophore, due to a lack of mitochondrial fission. Furthermore, we show that mitofissin directly binds to lipid membranes and brings about lipid membrane fragility to facilitate membrane fission. Taken together, we propose that mitofissin acts directly on lipid membranes to drive mitochondrial fission required for mitophagy.


Asunto(s)
Autofagia , Mitofagia , Animales , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Lípidos , Mamíferos/metabolismo
2.
Autophagy ; 19(10): 2657-2667, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37191320

RESUMEN

The endoplasmic reticulum (ER) undergoes selective autophagy called reticulophagy or ER-phagy. Multiple reticulon- and receptor expression enhancing protein (REEP)-like ER-shaping proteins, including budding yeast Atg40, serve as reticulophagy receptors that stabilize the phagophore on the ER by interacting with phagophore-conjugated Atg8. Additionally, they facilitate phagophore engulfment of the ER by remodeling ER morphology. We reveal that Hva22, a REEP family protein in fission yeast, promotes reticulophagy without Atg8-binding capacity. The role of Hva22 in reticulophagy can be replaced by expressing Atg40 independently of its Atg8-binding ability. Conversely, adding an Atg8-binding sequence to Hva22 enables it to substitute for Atg40 in budding yeast. Thus, the phagophore-stabilizing and ER-shaping activities, both of which Atg40 solely contains, are divided between two separate factors, receptors and Hva22, respectively, in fission yeast.Abbreviations: AIM: Atg8-family interacting motif; Atg: autophagy related; DTT: dithiothreitol; ER: endoplasmic reticulum GFP: green fluorescent protein; NAA: 1-naphthaleneacetic acid; REEP: receptor expression enhancing protein; RFP: red fluorescent protein; UPR: unfolded protein response.


Asunto(s)
Autofagia , Schizosaccharomyces , Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Portadoras/metabolismo
3.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33317697

RESUMEN

Mitophagy plays an important role in mitochondrial homeostasis. In yeast, the phosphorylation of the mitophagy receptor Atg32 by casein kinase 2 is essential for mitophagy. This phosphorylation is counteracted by the yeast equivalent of the STRIPAK complex consisting of the PP2A-like protein phosphatase Ppg1 and Far3-7-8-9-10-11 (Far complex), but the underlying mechanism remains elusive. Here we show that two subpopulations of the Far complex reside in the mitochondria and endoplasmic reticulum, respectively, and play distinct roles; the former inhibits mitophagy via Atg32 dephosphorylation, and the latter regulates TORC2 signaling. Ppg1 and Far11 form a subcomplex, and Ppg1 activity is required for the assembling integrity of Ppg1-Far11-Far8. The Far complex preferentially interacts with phosphorylated Atg32, and this interaction is weakened by mitophagy induction. Furthermore, the artificial tethering of Far8 to Atg32 prevents mitophagy. Taken together, the Ppg1-mediated Far complex formation and its dissociation from Atg32 are crucial for mitophagy regulation.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Mitocondrias/enzimología , Mitofagia , Fosfoproteínas Fosfatasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Relacionadas con la Autofagia/genética , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Complejos Multiproteicos , Fosfoproteínas Fosfatasas/genética , Fosforilación , Receptores Citoplasmáticos y Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
4.
Elife ; 92020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33138913

RESUMEN

Degradation of mitochondria through mitophagy contributes to the maintenance of mitochondrial function. In this study, we identified that Atg43, a mitochondrial outer membrane protein, serves as a mitophagy receptor in the model organism Schizosaccharomyces pombe to promote the selective degradation of mitochondria. Atg43 contains an Atg8-family-interacting motif essential for mitophagy. Forced recruitment of Atg8 to mitochondria restores mitophagy in Atg43-deficient cells, suggesting that Atg43 tethers expanding isolation membranes to mitochondria. We found that the mitochondrial import factors, including the Mim1-Mim2 complex and Tom70, are crucial for mitophagy. Artificial mitochondrial loading of Atg43 bypasses the requirement of the import factors, suggesting that they contribute to mitophagy through Atg43. Atg43 not only maintains growth ability during starvation but also facilitates vegetative growth through its mitophagy-independent function. Thus, Atg43 is a useful model to study the mechanism and physiological roles, as well as the origin and evolution, of mitophagy in eukaryotes.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Autofagia , Citosol/metabolismo , Evolución Molecular , Membranas Mitocondriales/metabolismo , Dominios Proteicos , Especificidad de la Especie , Técnicas del Sistema de Dos Híbridos
5.
Cell Rep ; 23(12): 3579-3590, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925000

RESUMEN

Mitophagy plays an important role in mitochondrial quality control. In yeast, phosphorylation of the mitophagy receptor Atg32 by casein kinase 2 (CK2) upon induction of mitophagy is a prerequisite for interaction of Atg32 with Atg11 (an adaptor protein for selective autophagy) and following delivery of mitochondria to the vacuole for degradation. Because CK2 is constitutively active, Atg32 phosphorylation must be precisely regulated to prevent unrequired mitophagy. We found that the PP2A (protein phosphatase 2A)-like protein phosphatase Ppg1 was essential for dephosphorylation of Atg32 and inhibited mitophagy. We identified the Far complex proteins, Far3, Far7, Far8, Far9, Far10, and Far11, as Ppg1-binding proteins. Deletion of Ppg1 or Far proteins accelerated mitophagy. Deletion of a cytoplasmic region (amino acid residues 151-200) of Atg32 caused the same phenotypes as in ppg1Δ cells, which suggested that dephosphorylation of Atg32 by Ppg1 required this region. Therefore, Ppg1 and the Far complex cooperatively dephosphorylate Atg32 to prevent excessive mitophagy.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Mitofagia , Complejos Multiproteicos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Citosol/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Fosforilación , Receptores Citoplasmáticos y Nucleares/metabolismo
6.
J Cell Biol ; 215(5): 649-665, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27903607

RESUMEN

Mitophagy is thought to play an important role in mitochondrial quality control. Mitochondrial division is believed to occur first, and autophagosome formation subsequently occurs to enwrap mitochondria as a process of mitophagy. However, there has not been any temporal analysis of mitochondrial division and autophagosome formation in mitophagy. Therefore, the relationships among these processes remain unclear. We show that the mitochondrial division factor Dnm1 in yeast or Drp1 in mammalian cells is dispensable for mitophagy. Autophagosome formation factors, such as FIP200, ATG14, and WIPIs, were essential for the mitochondrial division for mitophagy. Live-cell imaging showed that isolation membranes formed on the mitochondria. A small portion of the mitochondria then divided from parental mitochondria simultaneously with the extension of isolation membranes and autophagosome formation. These findings suggest the presence of a mitophagy process in which mitochondrial division for mitophagy is accomplished together with autophagosome formation.


Asunto(s)
Autofagosomas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Deferiprona , Dinaminas , Células HeLa , Humanos , Mamíferos/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Mitofagia/efectos de los fármacos , Modelos Biológicos , Piridonas/farmacología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo
7.
Autophagy ; 11(2): 332-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831013

RESUMEN

In cultured cells, not many mitochondria are degraded by mitophagy induced by physiological cellular stress. We observed mitophagy in HeLa cells using a method that relies on the pH-sensitive fluorescent protein Keima. With this approach, we found that mitophagy was barely induced by carbonyl cyanide m-chlorophenyl hydrazone treatment, which is widely used as an inducer of PARK2/Parkin-related mitophagy, whereas a small but modest amount of mitochondria were degraded by mitophagy under conditions of starvation or hypoxia. Mitophagy induced by starvation or hypoxia was marginally suppressed by knockdown of ATG7 and ATG12, or MAP1LC3B, which are essential for conventional macroautophagy. In addition, mitophagy was efficiently induced in Atg5 knockout mouse embryonic fibroblasts. However, knockdown of RAB9A and RAB9B, which are essential for alternative autophagy, but not conventional macroautophagy, severely suppressed mitophagy. Finally, we found that the MAPKs MAPK1/ERK2 and MAPK14/p38 were required for mitophagy. Based on these findings, we conclude that mitophagy in mammalian cells predominantly occurs through an alternative autophagy pathway, requiring the MAPK1 and MAPK14 signaling pathways.


Asunto(s)
Autofagia/fisiología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mitofagia/fisiología , Transducción de Señal/fisiología , Animales , Autofagia/efectos de los fármacos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Células HeLa , Humanos , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
8.
J Cell Sci ; 127(Pt 14): 3184-96, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24838945

RESUMEN

When mitophagy is induced in Saccharomyces cerevisiae, the mitochondrial outer membrane protein ScAtg32 interacts with the cytosolic adaptor protein ScAtg11. ScAtg11 then delivers the mitochondria to the pre-autophagosomal structure for autophagic degradation. Despite the importance of ScAtg32 for mitophagy, the expression and functional regulation of ScAtg32 are poorly understood. In this study, we identified and characterized the ScAtg32 homolog in Pichia pastoris (PpAtg32). Interestingly, we found that PpAtg32 was barely expressed before induction of mitophagy and was rapidly expressed after induction of mitophagy by starvation. Additionally, PpAtg32 was phosphorylated when mitophagy was induced. We found that PpAtg32 expression was suppressed by Tor and the downstream PpSin3-PpRpd3 complex. Inhibition of Tor by rapamycin induced PpAtg32 expression, but could neither phosphorylate PpAtg32 nor induce mitophagy. Based on these findings, we conclude that the Tor and PpSin3-PpRpd3 pathway regulates PpAtg32 expression, but not PpAtg32 phosphorylation.


Asunto(s)
Autofagia/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Proteínas Relacionadas con la Autofagia , Unión Proteica , Saccharomyces cerevisiae/citología , Proteínas de Transporte Vesicular/metabolismo
9.
EMBO Rep ; 14(9): 788-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897086

RESUMEN

Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase-deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32-Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Mitofagia , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia , Quinasa de la Caseína II/genética , Mitocondrias/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
10.
J Biol Chem ; 287(5): 3265-72, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22157017

RESUMEN

In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called "petite-mutant" phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.


Asunto(s)
ADN de Hongos/metabolismo , ADN Mitocondrial/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia , ADN de Hongos/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Mol Biol Cell ; 22(17): 3206-17, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21757540

RESUMEN

Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is believed to be the initial molecular step in which the autophagic machinery recognizes mitochondria as a cargo, although how this interaction is mediated is poorly understood. Therefore, we studied the Atg11-Atg32 interaction in detail. We found that the C-terminus region of Atg11, which included the fourth coiled-coil domain, interacted with the N-terminus region of Atg32 (residues 100-120). When mitophagy was induced, Ser-114 and Ser-119 on Atg32 were phosphorylated, and then the phosphorylation of Atg32, especially phosphorylation of Ser-114 on Atg32, mediated the Atg11-Atg32 interaction and mitophagy. These findings suggest that cells can regulate the amount of mitochondria, or select specific mitochondria (damaged or aged) that are degraded by mitophagy, by controlling the activity and/or localization of the kinase that phosphorylates Atg32. We also found that Hog1 and Pbs2, which are involved in the osmoregulatory signal transduction cascade, are related to Atg32 phosphorylation and mitophagy.


Asunto(s)
Autofagia , Mitocondrias/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Serina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia , Medios de Cultivo , Eliminación de Gen , Técnicas de Inactivación de Genes , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/química
12.
Science ; 327(5964): 439-42, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20093467

RESUMEN

Transport networks are ubiquitous in both social and biological systems. Robust network performance involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological networks have been honed by many cycles of evolutionary selection pressure and are likely to yield reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without centralized control and may represent a readily scalable solution for growing networks in general. We show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault tolerance, and cost to those of real-world infrastructure networks--in this case, the Tokyo rail system. The core mechanisms needed for adaptive network formation can be captured in a biologically inspired mathematical model that may be useful to guide network construction in other domains.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Physarum polycephalum/citología , Physarum polycephalum/fisiología , Vías Férreas , Algoritmos , Alimentos , Physarum polycephalum/crecimiento & desarrollo , Biología de Sistemas , Tokio
13.
Theory Biosci ; 127(2): 89-94, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18415133

RESUMEN

Understanding how biological systems solve problems could aid the design of novel computational methods. Information processing in unicellular eukaryotes is of particular interest, as these organisms have survived for more than a billion years using a simple system. The large amoeboid plasmodium of Physarum is able to solve a maze and to connect multiple food locations via a smart network. This study examined how Physarum amoebae compute these solutions. The mechanism involves the adaptation of the tubular body, which appears to be similar to a network, based on cell dynamics. Our model describes how the network of tubes expands and contracts depending on the flux of protoplasmic streaming, and reproduces experimental observations of the behavior of the organism. The proposed algorithm based on Physarum is simple and powerful.


Asunto(s)
Adaptación Fisiológica/fisiología , Corriente Citoplasmática/fisiología , Locomoción/fisiología , Aprendizaje por Laberinto/fisiología , Modelos Biológicos , Physarum/fisiología , Animales , Movimiento Celular/fisiología , Simulación por Computador
14.
Phys Rev Lett ; 100(1): 018101, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18232821

RESUMEN

When plasmodia of the true slime mold Physarum were exposed to unfavorable conditions presented as three consecutive pulses at constant intervals, they reduced their locomotive speed in response to each episode. When the plasmodia were subsequently subjected to favorable conditions, they spontaneously reduced their locomotive speed at the time when the next unfavorable episode would have occurred. This implied the anticipation of impending environmental change. We explored the mechanisms underlying these types of behavior from a dynamical systems perspective.


Asunto(s)
Locomoción/fisiología , Periodicidad , Physarum polycephalum/fisiología , Animales , Modelos Biológicos
15.
Phys Rev Lett ; 99(6): 068104, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17930872

RESUMEN

When two food sources are presented to the slime mold Physarum in the dark, a thick tube for absorbing nutrients is formed that connects the food sources through the shortest route. When the light-avoiding organism is partially illuminated, however, the tube connecting the food sources follows a different route. Defining risk as the experimentally measurable rate of light-avoiding movement, the minimum-risk path is exhibited by the organism, determined by integrating along the path. A model for an adaptive-tube network is presented that is in good agreement with the experimental observations.


Asunto(s)
Adaptación Fisiológica/fisiología , Luz , Locomoción/fisiología , Modelos Biológicos , Physarum polycephalum/fisiología , Animales , Conducta Animal/fisiología , Retroalimentación/fisiología , Matemática , Transducción de Señal/fisiología
16.
Chronobiol Int ; 22(1): 1-19, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15865318

RESUMEN

The roundworm, Caenorhabditis elegans, is known to carry homologues of clock genes such as per (=period) and tim (=timeless), which constitute the core of the circadian clock in Drosophila and mammals: lin-42 and tim-1. Analyses using WormBase (C. elegans gene database) have identified with relatively high identity analogous of the clock genes recognized in Drosophila and mammals, with the notable exception of cry (=cryptochrome), which is lacking in C. elegans. All of these C. elegans cognates of the clock genes appear to belong to members of the PAS-superfamily and to participate in development or responsiveness to the environment but apparently are not involved in the C. elegans circadian clock. Nevertheless, C. elegans exhibits convincing circadian rhythms in locomotor behavior in the adult stage and in resistance to hyperosmotic stress in starved larvae (L1) after hatching, indicating that it has a circadian clock with a core design entirely different from that of Drosophila and mammals. Here two possibilities are considered. First, the core of the C. elegans circadian clock includes transcriptional/translational feedback loops between genes and their protein products that are entirely different from those of Drosophila and mammals. Second, a more basic principle such as homeostasis governs the circadian cellular physiology, and was established primarily to minimize the accumulation of DNA damage in response to an environment cycling at 24 h intervals.


Asunto(s)
Caenorhabditis elegans/fisiología , Ritmo Circadiano , Modelos Animales , Animales , Bases de Datos Genéticas , Drosophila , Evolución Molecular , Técnicas Genéticas , Humanos , Movimiento , Ósmosis , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA