Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Clin Transl Immunology ; 13(7): e1513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957437

RESUMEN

Objective: Unique metabolic requirements accompany the development and functional fates of immune cells. How cellular metabolism is important in natural killer (NK) cells and their memory-like differentiation in bacterial infections remains elusive. Methods: Here, we utilise our established NK cell memory assay to investigate the metabolic requirement for memory-like NK cell formation and function in response to the Gram-negative intracellular bacteria Burkholderia pseudomallei (BP), the causative agent of melioidosis. Results: We demonstrate that CD160+ memory-like NK cells upon BP stimulation upregulate glucose and amino acid transporters in a cohort of recovered melioidosis patients which is maintained at least 3-month post-hospital admission. Using an in vitro assay, human BP-specific CD160+ memory-like NK cells show metabolic priming including increased expression of glucose and amino acid transporters with elevated glucose uptake, increased mTOR activation and mitochondrial membrane potential upon BP re-stimulation. Antigen-specific and cytokine-induced IFN-γ production of this memory-like NK cell subset are highly dependent on oxidative phosphorylation (OXPHOS) with some dependency on glycolysis, whereas the formation of CD160+ memory-like NK cells in vitro is dependent on fatty acid oxidation and OXPHOS and further increased by metformin. Conclusion: This study reveals the link between metabolism and cellular function of memory-like NK cells, which can be exploited for vaccine design and for monitoring protection against Gram-negative bacterial infection.

2.
Emerg Microbes Infect ; : 2380822, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008280

RESUMEN

AbstractMelioidosis is a tropical infection caused by the intracellular pathogen Burkholderia pseudomallei, an underreported and emerging global threat. As melioidosis-associated mortality is frequently high despite antibiotics, novel management strategies are critically needed. Therefore, we sought to determine whether functional changes in the host innate and adaptive immune responses are induced during acute melioidosis and are associated with outcome. Using a unique whole blood stimulation assay developed for use in resource-limited settings, we examined induced cellular functional and phenotypic changes in a cohort of patients with bacteremic melioidosis prospectively enrolled within 24 hours of positive blood culture and followed for 28 days. Compared to healthy controls, melioidosis survivors generated an IL-17 response mediated by Th17 cells and terminally-differentiated effector memory CD8+ T cells (P < 0.05, both), persisting to 28-days after enrollment. Furthermore, melioidosis survivors developed polyfunctional cytokine production in CD8+ T cells (P < 0.01). Conversely, a reduction in CCR6+ CD4+ T cells was associated with higher mortality, even after adjustments for severity of illness (P = 0.004). Acute melioidosis was also associated with a profound acute impairment in monocyte function as stimulated cytokine responses were reduced in classical, intermediate and non-classical monocytes. Impaired monocyte cytokine function improved by 28-days after enrollment. These data suggest that IL-17 mediated cellular responses may be contributors to host defense during acute melioidosis, and that innate immune function may be impaired. These insights could provide novel targets for the development of therapies and vaccine targets in this frequently lethal disease.

3.
Nat Commun ; 15(1): 5699, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972886

RESUMEN

Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conduct a comprehensive genomic analysis of 1,391 B. pseudomallei isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date. Our study identifies three dominant lineages, each with unique gene sets potentially enhancing bacterial fitness in the environment. We find that recombination drives lineage-specific gene flow. Transcriptome analyses of representative clinical isolates from each dominant lineage reveal increased expression of lineage-specific genes under environmental conditions in two out of three lineages. This underscores the potential importance of environmental persistence for these dominant lineages. The study also highlights the influence of environmental factors such as terrain slope, altitude, and river direction on the geographical dispersal of B. pseudomallei. Collectively, our findings suggest that environmental persistence may play a role in facilitating the spread of B. pseudomallei, and as a prerequisite for exposure and infection, thereby providing useful insights for informing melioidosis prevention and control strategies.


Asunto(s)
Burkholderia pseudomallei , Variación Genética , Melioidosis , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/aislamiento & purificación , Burkholderia pseudomallei/clasificación , Melioidosis/microbiología , Melioidosis/epidemiología , Tailandia/epidemiología , Humanos , Filogenia , Flujo Génico , Genoma Bacteriano/genética
4.
Microbiol Spectr ; 12(3): e0332123, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38299821

RESUMEN

Burkholderia pseudomallei and Burkholderia cepacia are Gram-negative, soil-dwelling bacteria that are found in a wide variety of environmental niches. While B. pseudomallei is the causative agent of melioidosis in humans and animals, members of the B. cepacia complex typically only cause disease in immunocompromised hosts. In this study, we report the identification of B. cepacia strains isolated from either patients or soil in Laos and Thailand that express a B. pseudomallei-like 6-deoxyheptan capsular polysaccharide (CPS). These B. cepacia strains were initially identified based on their positive reactivity in a latex agglutination assay that uses the CPS-specific monoclonal antibody (mAb) 4B11. Mass spectrometry and recA sequencing confirmed the identity of these isolates as B. cepacia (formerly genomovar I). Total carbohydrates extracted from B. cepacia cell pellets reacted with B. pseudomallei CPS-specific mAbs MCA147, 3C5, and 4C4, but did not react with the B. pseudomallei lipopolysaccharide-specific mAb Pp-PS-W. Whole genome sequencing of the B. cepacia isolates revealed the presence of genes demonstrating significant homology to those comprising the B. pseudomallei CPS biosynthetic gene cluster. Collectively, our results provide compelling evidence that B. cepacia strains expressing the same CPS as B. pseudomallei co-exist in the environment alongside B. pseudomallei. Since CPS is a target that is often used for presumptive identification of B. pseudomallei, it is possible that the occurrence of these unique B. cepacia strains may complicate the diagnosis of melioidosis.IMPORTANCEBurkholderia pseudomallei, the etiologic agent of melioidosis, is an important cause of morbidity and mortality in tropical and subtropical regions worldwide. The 6-deoxyheptan capsular polysaccharide (CPS) expressed by this bacterial pathogen is a promising target antigen that is useful for rapidly diagnosing melioidosis. Using assays incorporating CPS-specific monoclonal antibodies, we identified both clinical and environmental isolates of Burkholderia cepacia that express the same CPS antigen as B. pseudomallei. Because of this, it is important that staff working in melioidosis-endemic areas are aware that these strains co-exist in the same niches as B. pseudomallei and do not solely rely on CPS-based assays such as latex-agglutination, AMD Plus Rapid Tests, or immunofluorescence tests for the definitive identification of B. pseudomallei isolates.


Asunto(s)
Burkholderia cepacia , Burkholderia pseudomallei , Melioidosis , Animales , Humanos , Burkholderia pseudomallei/genética , Melioidosis/diagnóstico , Melioidosis/microbiología , Burkholderia cepacia/genética , Polisacáridos , Anticuerpos Monoclonales , Suelo
5.
bioRxiv ; 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38106061

RESUMEN

Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conducted a comprehensive genomic analysis of 1,391 B. pseudomallei isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date. Our study identified three dominant lineages with unique gene sets enhancing bacterial fitness, indicating lineage-specific adaptation strategies. Crucially, recombination was found to drive lineage-specific gene flow. Transcriptome analyses of representative clinical isolates from each dominant lineage revealed heightened expression of lineage-specific genes in environmental versus infection conditions, notably under nutrient depletion, highlighting environmental persistence as a key factor in the success of dominant lineages. The study also revealed the role of environmental factors - slope of terrain, altitude, direction of rivers, and the northeast monsoons - in shaping B. pseudomallei geographical dispersal. Collectively, our findings highlight persistence in the environment as a pivotal element facilitating B. pseudomallei spread, and as a prelude to exposure and infection, thereby providing useful insights for informing melioidosis prevention and control strategies.

6.
iScience ; 26(8): 107234, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520720

RESUMEN

NK cells are endowed with immunological memory to a range of pathogens but the development of NK cell memory in bacterial infections remains elusive. Here, we establish an assay inducing memory-like NK cell response to Burkholderia pseudomallei, the causative agent of the severe bacterial disease called melioidosis, and explore NK cell memory in a melioidosis patient cohort. We show that NK cells require bacteria-primed monocytes to acquire memory-like properties, demonstrated by bacteria-specific responses, features that strongly associate with CD160 expression. Induction of this memory-like NK cell is partly dependent on CD160 and IL-12R. Importantly, CD160 expression identifies memory-like NK cells in a cohort of recovered melioidosis patients with heightened responses maintained at least 3 months post hospital admission and reduced numbers of this cell population independently correlate with recurrent melioidosis. These newly identified memory-like NK cells are a promising target for future vaccine design and for monitoring protection against infection.

7.
J Fungi (Basel) ; 9(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36983521

RESUMEN

Candidemia is often associated with high mortality, and Candida albicans, Candida tropicalis, Candida glabrata, and Candida parapsilosis are common causes of this disease. The pathogenicity characteristics of specific Candida spp. that cause candidemia in Thailand are poorly understood. This study aimed to characterize the virulence factors of Candida spp. Thirty-eight isolates of different Candida species from blood cultures were evaluated for their virulence properties, including exoenzyme and biofilm production, cell surface hydrophobicity, tissue invasion, epithelial cell damage, morphogenesis, and phagocytosis resistance; the identity and frequency of mutations in ERG11 contributing to azole-resistance were also determined. C. albicans had the highest epithelial cell invasion rate and phospholipase activity, with true hyphae formation, whereas C. tropicalis produced the most biofilm, hydrophobicity, protease activity, and host cell damage and true hyphae formation. ERG11 mutations Y132F and S154F were observed in all azole-resistant C. tropicalis. C. glabrata had the most hemolytic activity while cell invasion was low with no morphologic transition. C. glabrata was more easily phagocytosed than other species. C. parapsilosis generated pseudohyphae but not hyphae and did not exhibit any trends in exoenzyme production. This knowledge will be crucial for understanding the pathogenicity of Candida spp. and will help to explore antivirulence-based treatment.

8.
Front Microbiol ; 14: 1103297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814569

RESUMEN

The bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a severe tropical disease associated with high mortality and relapse and persistent infections. Treatment of melioidosis requires prolonged antibiotic therapy; however, little is known about relapse and persistent infections, particularly the phenotypic and genetic alterations of B. pseudomallei in patients. In this study, we performed pulsed-field gel electrophoresis (PFGE) to compare the bacterial genotype between the initial isolate and the subsequent isolate from each of 23 suspected recurrent and persistent melioidosis patients in Northeast Thailand. We used whole-genome sequencing (WGS) to investigate multilocus sequence types and genetic alterations of within-host strain pairs. We also investigated the bacterial phenotypes associated with relapse and persistent infections, including multinucleated giant cell (MNGC) formation efficiency and intracellular multiplication. We first identified 13 (1.2%) relapse, 7 (0.7%) persistent, and 3 (0.3%) reinfection patients from 1,046 survivors. Each of the 20 within-host strain pairs from patients with relapse and persistent infections shared the same genotype, suggesting that the subsequent isolates arise from the infecting isolate. Logistic regression analysis of clinical data revealed regimen and duration of oral antibiotic therapies as risk factors associated with relapse and persistent infections. WGS analysis demonstrated 17 within-host genetic alteration events in 6 of 20 paired isolates, including a relatively large deletion and 16 single-nucleotide polymorphism (stocktickerSNP) mutations distributed across 12 genes. In 1 of 20 paired isolates, we observed significantly increased cell-to-cell fusion and intracellular replication in the second isolate compared with the initial isolate from a patient with persistent infection. WGS analysis suggested that a non-synonymous mutation in the tssB-5 gene, which encoded an essential component of the type VI secretion system, may be associated with the increased intracellular replication and MNGC formation efficiency of the second isolate of the patient. This information provides insights into genetic and phenotypic alterations in B. pseudomallei in human melioidosis, which may represent a bacterial strategy for persistent and relapse infections.

9.
Artículo en Inglés | MEDLINE | ID: mdl-33593842

RESUMEN

Melioidosis is an often fatal infection in tropical regions caused by an environmental bacterium, Burkholderia pseudomallei Current recommended melioidosis treatment requires intravenous ß-lactam antibiotics such as ceftazidime (CAZ), meropenem (MEM) or amoxicillin-clavulanic acid (AMC) and oral trimethoprim-sulfamethoxazole. Emerging antibiotic resistance could lead to therapy failure and high mortality. We performed a prospective multicentre study in northeast Thailand during 2015-2018 to evaluate antibiotic susceptibility and characterize ß-lactam resistance in clinical B. pseudomallei isolates. Collection of 1,317 B. pseudomallei isolates from patients with primary and relapse infections were evaluated for susceptibility to CAZ, imipenem (IPM), MEM and AMC. ß-lactam resistant isolates were confirmed by broth microdilution method and characterized by whole genome sequence analysis, penA expression and ß-lactamase activity. The resistant phenotype was verified via penA mutagenesis. All primary isolates were IPM-susceptible but we observed two CAZ-resistant and one CAZ-intermediate resistant isolates, two MEM-less susceptible isolates, one AMC-resistant and two AMC-intermediate resistant isolates. One of 13 relapse isolates was resistant to both CAZ and AMC. Two isolates were MEM-less susceptible. Strains DR10212A (primary) and DR50054E (relapse) were multi-drug resistant. Genomic and mutagenesis analyses supplemented with gene expression and ß-lactamase analyses demonstrated that CAZ-resistant phenotype was caused by PenA variants: P167S (N=2) and penA amplification (N=1). Despite the high mortality rate in melioidosis, our study revealed that B. pseudomallei isolates had a low frequency of ß-lactam resistance caused by penA alterations. Clinical data suggest that resistant variants may emerge in patients during antibiotic therapy and be associated with poor response to treatment.

10.
Analyst ; 147(15): 3558-3569, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801578

RESUMEN

Antibiotic resistance is a major global challenge. Although microfluidic antibiotic susceptibility tests (AST) offer great potential for rapid and portable testing to inform correct antibiotic selection, the impact of miniaturisation on broth microdilution (BMD) is not fully understood. We developed a 10-plex microcapillary based broth microdilution using resazurin as a colorimetric indicator for bacterial growth. Each capillary had a 1 microlitre capillary volume, 100 times smaller than microplate broth microdilution. The microcapillary BMD was compared to an in-house standard microplate AST and commercial Vitek 2 system. When tested with 25 uropathogenic isolates (20 Escherichia coli and 5 Klebsiella pneumoniae) and 2 reference E. coli, these devices gave 96.1% (441/459 isolate/antibiotic combinations) categorical agreement, across 17 therapeutically beneficial antibiotics, compared to in-house microplate BMD with resazurin. A further 99 (50 E. coli and 49 K. pneumoniae) clinical isolates were tested against 10 antibiotics and showed 92.3% categorical agreement (914/990 isolate/antibiotic combinations) compared to the Vitek 2 measurements. These microcapillary tests showed excellent analytical agreement with existing AST methods. Furthermore, the small size and simple colour change can be recorded using a smartphone camera or it is feasible to follow growth kinetics using very simple, low-cost readers. The test strips used here are produced in large batches, allowing hundreds of multiplex tests to be made and tested rapidly. Demonstrating performance of miniaturised broth microdilution with clinical isolates paves the way for wider use of microfluidic AST.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana
11.
Sci Rep ; 10(1): 17972, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087788

RESUMEN

Tetraspanins are four-span transmembrane proteins of host cells that facilitate infections by many pathogens. Burkholderia pseudomallei is an intracellular bacterium and the causative agent of melioidosis, a severe disease in tropical regions. This study investigated the role of tetraspanins in B. pseudomallei infection. We used flow cytometry to determine tetraspanins CD9, CD63, and CD81 expression on A549 and J774A.1 cells. Their roles in B. pseudomallei infection were investigated in vitro using monoclonal antibodies (MAbs) and recombinant large extracellular loop (EC2) proteins to pretreat cells before infection. Knockout of CD9 and CD81 in cells was performed using CRISPR Cas9 to confirm the role of tetraspanins. Pretreatment of A549 cells with MAb against CD9 and CD9-EC2 significantly enhanced B. pseudomallei internalization, but MAb against CD81 and CD81-EC2 inhibited MNGC formation. Reduction of MNGC formation was consistently observed in J774.A1 cells pretreated with MAbs specific to CD9 and CD81 and with CD9-EC2 and CD81-EC2. Data from knockout experiments confirmed that CD9 enhanced bacterial internalization and that CD81 inhibited MNGC formation. Our data indicate that tetraspanins are host cellular factors that mediated internalization and membrane fusion during B. pseudomallei infection. Tetraspanins may be the potential therapeutic targets for melioidosis.


Asunto(s)
Burkholderia pseudomallei/patogenicidad , Fusión Celular , Melioidosis/microbiología , Fagocitos/fisiología , Tetraspaninas/fisiología , Células A549 , Anticuerpos Monoclonales , Sistemas CRISPR-Cas , Células Cultivadas , Células Gigantes/microbiología , Humanos , Melioidosis/terapia , Tetraspanina 28 , Tetraspanina 29 , Tetraspaninas/metabolismo
12.
PLoS Negl Trop Dis ; 14(9): e0008590, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32991584

RESUMEN

BACKGROUND: Burkholderia pseudomallei is an environmental bacterium that causes melioidosis. A facultative intracellular pathogen, B. pseudomallei can induce multinucleated giant cells (MNGCs) leading to plaque formation in vitro. B. pseudomallei can switch colony morphotypes under stress conditions. In addition, different isolates have been reported to have varying virulence in vivo, but genomic evolution and the relationship with plaque formation is poorly understood. METHODOLOGY/PRINCIPLE FINDINGS: To gain insights into genetic underpinnings of virulence of B. pseudomallei, we screened plaque formation of 52 clinical isolates and 11 environmental isolates as well as 4 isogenic morphotype isolates of B. pseudomallei strains K96243 (types II and III) and 153 (types II and III) from Thailand in A549 and HeLa cells. All isolates except one environmental strain (A4) and K96243 morphotype II were able to induce plaque formation in both cell lines. Intracellular growth assay and confocal microscopy analyses demonstrated that the two plaque-forming-defective isolates were also impaired in intracellular replication, actin polymerization and MNGC formation in infected cells. Whole genome sequencing analysis and PCR revealed that both isolates had a large genomic loss on the same region in chromosome 2, which included Bim cluster, T3SS-3 and T6SS-5 genes. CONCLUSIONS/SIGNIFICANCE: Our plaque screening and genomic studies revealed evidence of impairment in plaque formation in environmental isolates of B. pseudomallei that is associated with large genomic loss of genes important for intracellular multiplication and MNGC formation. These findings suggest that the genomic and phenotypic differences of environmental isolates may be associated with clinical infection.


Asunto(s)
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/aislamiento & purificación , Genoma Bacteriano/genética , Células Gigantes/microbiología , Macrófagos/microbiología , Células A549 , Adulto , Anciano , Burkholderia pseudomallei/patogenicidad , Línea Celular Tumoral , Femenino , Eliminación de Gen , Células HeLa , Humanos , Masculino , Melioidosis/microbiología , Melioidosis/patología , Técnicas Microbiológicas , Persona de Mediana Edad , Estudios Prospectivos , Secuenciación Completa del Genoma , Adulto Joven
13.
PLoS Negl Trop Dis ; 13(4): e0007348, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31002718

RESUMEN

BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a severe infectious disease in tropical regions. It is necessary to understand the risk of acquiring this infection from the environment. METHODOLOGY /PRINCIPAL FINDINGS: The prevalence, concentration and genetic diversity of B. pseudomallei isolates collected from two sites in Buriram, Northeast Thailand were investigated. Forty-four environmental samples (18 from soil, 14 from rice rhizosphere, and 12 from water) were collected; of those 44 samples, 19 were collected from near a patient's residence and 25 from suspected exposure sites and compared with 10 clinical isolates of the patient. Quantitative culture was performed, and B. pseudomallei was identified using the latex agglutination test and matrix-laser absorption ionisation mass spectrometry. Genotyping was performed in 162 colonies from clinical (N = 10) and environmental samples (N = 152) using pulse-field gel electrophoresis (PFGE) followed by multi-locus sequence typing (MLST) of the clinical strain. B. pseudomallei was detected in 11 of the 44 environmental samples (1 from soil, 4 from rice rhizosphere, and 6 from water). The bacterial count in the positive soil sample was 115 CFU/g. The mean concentrations ± SDs of B. pseudomallei in the positive water and rhizosphere samples were 5.1 ± 5.5 CFU/ml and 80 ± 49 CFU/g, respectively. Six water samples with positive results were collected from a pond and water sources for drinking and daily use. All colonies isolated from the patient shared the same PFGE type (PT) indicating monoclonal infection of ST99. Although the 152 colonies from environmental isolates exhibited 25 PTs, none were identical to the patient's isolates. PT5 and PT7 were most common genotype among the environmental samples. CONCLUSIONS/SIGNIFICANCE: Diverse genotypes of B. pseudomallei were prevalent in the environment. However, the patient may have been infected with a low-density genotype. Intervention strategies for preventing B. pseudomallei infection are required.


Asunto(s)
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/aislamiento & purificación , Variación Genética , Melioidosis/microbiología , Monitoreo del Ambiente , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Tipificación de Secuencias Multilocus , Oryza/microbiología , Prevalencia , Microbiología del Suelo , Tailandia , Microbiología del Agua
14.
Can J Infect Dis Med Microbiol ; 2018: 8457012, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30581514

RESUMEN

Methicillin-resistant staphylococci are now recognized as a major cause of infectious diseases, particularly in hospitals. Molecular epidemiology is important for prevention and control of infection, but little information is available regarding staphylococcal infections in Northern Thailand. In the present study, we examined antimicrobial susceptibility patterns, detection of antimicrobial resistance genes, and SCCmec types of methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS) isolated from patients in a hospital in Northern Thailand. The species of MRSA and MR-CoNS were identified using combination methods, including PCR, MALDI-TOF-MS, and tuf gene sequencing. The susceptibility pattern of all isolates was determined by the disk diffusion method. Antimicrobial resistance genes, SCCmec types, and ST239 were characterized using single and multiplex PCR. ST239 was predominant in MRSA isolates (10/23). All MR-CoNS (N=31) were identified as S. haemolyticus (N=18), S. epidermidis (N=3), S. cohnii (N=3), S. capitis (N=6), and S. hominis (N=1). More than 70% of MRSA and MR-CoNS were resistant to cefoxitin, penicillin, oxacillin, erythromycin, clindamycin, gentamicin, and ciprofloxacin. In MRSA isolates, the prevalence of ermA (78.3%) and ermB (73.9%) genes was high compared to that of the ermC gene (4.3%). In contrast, ermC (87.1%) and qacA/B genes (70.9%) were predominant in MR-CoNS isolates. SCCmec type III was the dominant type of MRSA (13/23), whereas SCCmec type II was more present in S. haemolyticus (10/18). Ten MRSA isolates with SCCmec type III were ST239, which is the common type of MRSA in Asia. This finding provides useful information for a preventive health strategy directed against methicillin-resistant staphylococcal infections.

15.
Am J Trop Med Hyg ; 97(1): 62-67, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28719324

RESUMEN

Burkholderia pseudomallei is the causative agent of melioidosis, a serious infection associated with high mortality and relapse. Current antimicrobial therapy using ceftazidime (CAZ) is often ineffective. Inhibitors of LpxC, the enzyme responsible for lipid A biosynthesis, have potential antimicrobial activity against several Gram-negative bacteria in vivo, but their activity against B. pseudomallei is unclear. Herein, we investigated the susceptibility of B. pseudomallei clinical isolates to LpxC-4, an LpxC inhibitor, and LpxC-4 in combination with CAZ. Time-kill assays for bactericidal activity were conducted for B. pseudomallei K96243, revealing growth inhibition and bactericidal effect at LpxC-4 concentrations of 2 µg/mL and 4 µg/mL, respectively. No significant synergistic effect was observed with the combination of LpxC-4 and CAZ. LpxC-4 susceptibility was tested on three groups of clinical isolates:1) CAZ- and trimethoprim-sulfamethoxazole (SXT)-susceptible (N = 71), 2) CAZ-resistant (N = 14), and 3) SXT-resistant (N = 23) isolates, by broth microdilution. The minimum concentration of LpxC-4 required to inhibit the growth of 90% of organisms was 2 µg/mL for all isolates. The median minimum inhibitory concentration of both the CAZ/SXT-susceptible and CAZ-resistant groups was 1 µg/mL (interquartile range [IQR] = 1-2 µg/mL), compared with 2 µg/mL (IQR = 2-4 µg/mL) for the SXT-resistant group. Cell morphology was observed after drug exposure by immunofluorescent staining, and a change from rod-shaped to cell wall-defective spherical cells was observed in surviving bacteria. LpxC-4 is a potent bactericidal agent against B. pseudomallei and warrants further testing as a new antibiotic to treat melioidosis.


Asunto(s)
Aciltransferasas/fisiología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/fisiología , Burkholderia pseudomallei/efectos de los fármacos , Ceftazidima/uso terapéutico , Farmacorresistencia Bacteriana/efectos de los fármacos , Melioidosis/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Humanos , Melioidosis/microbiología
16.
PLoS Negl Trop Dis ; 10(9): e0005005, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27668750

RESUMEN

BACKGROUND: Burkholderia pseudomallei is a soil saprophytic bacterium that causes melioidosis. The infection occurs through cutaneous inoculation, inhalation or ingestion. Bacteriophages (phages) in the same ecosystem may significantly impact the biology of this bacterium in the environment, and in their culturability in the laboratory. METHODS/PRINCIPAL FINDINGS: The soil samples were analysed for the presence of bacteria using culture methods, and for phages using plaque assays on B. pseudomallei strain 1106a lawns. Of the 86 soil samples collected from northeastern Thailand, B. pseudomallei was cultured from 23 (26.7%) samples; no phage capable of infecting B. pseudomallei was detected in these samples. In contrast, phages capable of infecting B. pseudomallei, but no bacteria, were present in 10 (11.6%) samples. B. pseudomallei and their phages were co-isolated from only 3 (3.5%) of soil samples. Since phage capable of infecting B. pseudomallei could not have appeared in the samples without the prior presence of bacteria, or exposure to bacteria nearby, our data suggest that all phage-positive/bacteria-negative samples have had B. pseudomallei in or in a close proximity to them. Taken together, these findings indicate that the presence of phages may influence the success of B. pseudomallei isolation. Transmission electron microscopy revealed that the isolated phages are podoviruses. The temperate phages residing in soil-isolated strains of B. pseudomallei that were resistant to the dominant soil borne phages could be induced by mitomycin C. These induced-temperate phages were closely related, but not identical, to the more dominant soil-isolated phage type. CONCLUSION/SIGNIFICANCE: The presence of podoviruses capable of infecting B. pseudomallei may affect the success of the pathogen isolation from the soil. The currently used culture-based methods of B. pseudomallei isolation appear to under-estimate the bacterial abundance. The detection of phage capable of infecting B. pseudomallei from environmental samples could be a useful preliminary test to indicate the likely presence of B. pseudomallei in environmental samples.

17.
Infect Immun ; 83(5): 2127-38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25776750

RESUMEN

Burkholderia pseudomallei is a CDC tier 1 select agent that causes melioidosis, a severe disease in humans and animals. Persistent infections are common, and there is currently no vaccine available. Lipopolysaccharide (LPS) is a potential vaccine candidate. B. pseudomallei expresses three serologically distinct LPS types. The predominant O-polysaccharide (OPS) is an unbranched heteropolymer with repeating d-glucose and 6-deoxy-l-talose residues in which the 6-deoxy-l-talose residues are variably replaced with O-acetyl and O-methyl modifications. We observed that primary clinical B. pseudomallei isolates with mucoid and nonmucoid colony morphologies from the same sample expressed different antigenic types distinguishable using an LPS-specific monoclonal antibody (MAb). MAb-reactive (nonmucoid) and nonreactive (mucoid) strains from the same patient exhibited identical LPS banding patterns by silver staining and indistinguishable genotypes. We hypothesized that LPS antigenic variation reflected modification of the OPS moieties. Mutagenesis of three genes involved in LPS synthesis was performed in B. pseudomallei K96243. Loss of MAb reactivity was observed in both wbiA (encoding a 2-O-acetyltransferase) and wbiD (putative methyl transferase) mutants. The structural characteristics of the OPS moieties from isogenic nonmucoid strain 4095a and mucoid strain 4095c were further investigated. Utilizing nuclear magnetic resonance (NMR) spectroscopy, we found that B. pseudomallei 4095a and 4095c OPS antigens exhibited substitution patterns that differed from the prototypic OPS structure. Specifically, 4095a lacked 4-O-acetylation, while 4095c lacked both 4-O-acetylation and 2-O-methylation. Our studies indicate that B. pseudomallei OPS undergoes antigenic variation and suggest that the 9D5 MAb recognizes a conformational epitope that is influenced by both O-acetyl and O-methyl substitution patterns.


Asunto(s)
Variación Antigénica , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/metabolismo , Antígenos O/metabolismo , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Burkholderia pseudomallei/química , Burkholderia pseudomallei/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Humanos , Espectroscopía de Resonancia Magnética , Melioidosis/microbiología , Antígenos O/química , Antígenos O/inmunología , Unión Proteica
19.
Emerg Infect Dis ; 20(2): 265-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24447771

RESUMEN

We identified 10 patients in Thailand with culture-confirmed melioidosis who had Burkholderia pseudomallei isolated from their drinking water. The multilocus sequence type of B. pseudomallei from clinical specimens and water samples were identical for 2 patients. This finding suggests that drinking water is a preventable source of B. pseudomallei infection.


Asunto(s)
Burkholderia pseudomallei/genética , ADN Bacteriano/clasificación , Agua Potable/microbiología , Melioidosis/epidemiología , Anciano , Anciano de 80 o más Años , Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/aislamiento & purificación , ADN Bacteriano/genética , Femenino , Humanos , Masculino , Melioidosis/diagnóstico , Melioidosis/microbiología , Tipificación de Secuencias Multilocus , Estaciones del Año , Tailandia/epidemiología
20.
Am J Trop Med Hyg ; 89(4): 794-796, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24002484

RESUMEN

Floodwater samples (N = 110) collected during the 2011 Bangkok floods were tested for Leptospira using culture and polymerase chain reaction (PCR); 65 samples were PCR-positive for putatively non-pathogenic Leptospira species, 1 sample contained a putatively pathogenic Leptospira, and 6 samples contained Leptospira clustering phylogenetically with the intermediate group. The low prevalence of pathogenic and intermediate Leptospira in floodwater was consistent with the low number of human leptospirosis cases reported to the Bureau of Epidemiology in Thailand. This study provides baseline information on environmental Leptospira in Bangkok together with a set of laboratory tests that could be readily deployed in the event of future flooding.


Asunto(s)
Inundaciones , Leptospira/clasificación , Microbiología del Agua , Humanos , Leptospira/genética , Leptospirosis/epidemiología , Leptospirosis/microbiología , Filogenia , Tailandia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA