Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
PNAS Nexus ; 3(8): pgae319, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39131911

RESUMEN

CHCHD2 and CHCHD10, linked to Parkinson's disease and amyotrophic lateral sclerosis-frontotemporal dementia (ALS), respectively, are mitochondrial intermembrane proteins that form a heterodimer. This study aimed to investigate the impact of the CHCHD2 P14L variant, implicated in ALS, on mitochondrial function and its subsequent effects on cellular homeostasis. The missense variant of CHCHD2, P14L, found in a cohort of patients with ALS, mislocalized CHCHD2 to the cytoplasm, leaving CHCHD10 in the mitochondria. Drosophila lacking the CHCHD2 ortholog exhibited mitochondrial degeneration. In contrast, human CHCHD2 P14L, but not wild-type human CHCHD2, failed to suppress this degeneration, suggesting that P14L is a pathogenic variant. The mitochondrial Ca2+ buffering capacity was reduced in Drosophila neurons expressing human CHCHD2 P14L. The altered Ca2+-buffering phenotype was also observed in cultured human neuroblastoma SH-SY5Y cells expressing CHCHD2 P14L. In these cells, transient elevation of cytoplasmic Ca2+ facilitated the activation of calpain and caspase-3, accompanied by the processing and insolubilization of TDP-43. These observations suggest that CHCHD2 P14L causes abnormal Ca2+ dynamics and TDP-43 aggregation, reflecting the pathophysiology of ALS.

2.
Brain Behav Immun ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142420

RESUMEN

Amyloid-ß (Aß) and hyperphosphorylated tau protein are targets for Alzheimer's Disease (AD) immunotherapies, which are generally focused on single epitopes within Aß or tau. However, due to the complexity of both Aß and tau in AD pathogenesis, a multipronged approach simultaneously targeting multiple epitopes of both proteins could overcome limitations of monotherapies. Herein, we propose an active AD immunotherapy based on a nanoparticle vaccine comprising two Aß peptides (1-14 and pyroglutamate pE3-14) and three tau peptides (centered on phosphorylated pT181, pT217 and pS396/404). These correspond to both soluble and aggregated targets and are displayed on the surface of immunogenic liposomes in an orientation that maintains reactivity with epitope-specific monoclonal antibodies. Intramuscular immunization of mice with individual epitopes resulted in minimally cross-reactive antibody induction, while simultaneous co-display of 5 antigens ("5-plex") induced antibodies against all epitopes without immune interference. Post-immune sera recognized plaques and neurofibrillary tangles from human AD brain tissue. Vaccine administration to 3xTg-AD mice using a prophylactical dosing schedule inhibited tau and amyloid pathologies and resulted in improved cognitive function. Immunization was well tolerated and did not induce antigen-specific cellular responses or persistent inflammatory responses in the peripheral or central nervous system. Antibody levels could be reversed by halting monthly vaccinations. Altogether, these results indicate that active immune therapies based on nanoparticle formulations of multiple Aß and tau epitopes warrant further study for treating early-stage AD.

4.
Acta Histochem Cytochem ; 57(3): 119-130, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38988692

RESUMEN

Pathological hallmark of Alzheimer's disease (AD) is characterized by the accumulation and aggregation of amyloid ß (Aß) peptides into extracellular plaques of the brain. Clarification of the process of how soluble Aß starts to assemble into amyloid fibrils is an essential step in elucidating the pathogenesis of AD. In our previous study, Aß proteoforms including full-length Aß40 and Aß42/43 with N- and C-terminal truncated forms were visualized in postmortem brains from AD patients with matrix-assisted laser desorption/ionization-based mass spectrometry imaging (MALDI-MSI). In this study, Aß proteoforms were consistently visualized by an updated protocol, and uncharacterized peptides such as Aß1-29 and Aß10-40 in AD brains were also visualized. To decipher neurotoxic effects of Aß in patients' brains, here we integrate liquid chromatography tandem mass spectrometry (LC-MS/MS) based shotgun proteomics with laser microdissection (LMD) excised tissue samples as well as direct tissue imaging with MALDI-MSI. With this approach, we have highlighted dynamic alterations of microtubule associating proteins (MAPs) including MAP1A, MAP1B and MAP2 as well as AD dominant proteins including APP, UCHL1, SNCA, and APOE. Of note, as lipid dysregulation has been implicated with AD pathology, we have challenged to integrate proteomics and lipid imaging for AD and control brain tissue. Spatial multi-omics is also valid to uncover molecular pathology of white matter as well as grey matter and leptomeningeal area, for example, by visualizing heme in patients' postmortem brains.

5.
Neuroradiology ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039147

RESUMEN

PURPOSE: Due to the indistinguishable clinical features of corticobasal syndrome (CBS), the antemortem differentiation between corticobasal degeneration (CBD) and its mimics remains challenging. However, the utility of conventional magnetic resonance imaging (MRI) for the diagnosis of CBD has not been sufficiently evaluated. This study aimed to investigate the diagnostic performance of conventional MRI findings in differentiating pathologically confirmed CBD from its mimics. METHODS: Semiquantitative visual rating scales were employed to assess the degree and distribution of atrophy and asymmetry on conventional T1-weighted and T2-weighted images. Additionally, subcortical white matter hyperintensity (SWMH) on fluid-attenuated inversion recovery images were visually evaluated. RESULTS: In addition to 19 patients with CBD, 16 with CBD mimics (progressive supranuclear palsy (PSP): 9, Alzheimer's disease (AD): 4, dementia with Lewy bodies (DLB): 1, frontotemporal lobar degeneration with TAR DNA-binding protein of 43 kDa(FTLD-TDP): 1, and globular glial tauopathy (GGT): 1) were investigated. Compared with the CBD group, the PSP-CBS subgroup showed severe midbrain atrophy without SWMH. The non-PSP-CBS subgroup, comprising patients with AD, DLB, FTLD-TDP, and GGT, showed severe temporal atrophy with widespread asymmetry, especially in the temporal lobes. In addition to over half of the patients with CBD, two with FTLD-TDP and GGT showed SWMH, respectively. CONCLUSION: This study elucidates the distinct structural changes between the CBD and its mimics based on visual rating scales. The evaluation of atrophic distribution and SWMH may serve as imaging biomarkers of conventional MRI for detecting background pathologies.

6.
Front Neurol ; 15: 1419104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081340

RESUMEN

Introduction: Low-grade epilepsy-associated tumors are the second most common histopathological diagnoses in cases of drug-resistant focal epilepsy. However, the connection between neuroimaging features and genetic alterations in these tumors is unclear, prompting an investigation into genotype-relevant neuroimaging characteristics. Methods: This study retrospectively analyzed neuroimaging and surgical specimens from 46 epilepsy patients with low-grade epilepsy-associated neuroepithelial tumors that had genetic mutations identified through panel sequencing to investigate their relationship to genotypes. Results: Three distinct neuroimaging groups were established: Group 1 had indistinct borders and iso T1-weighted and slightly high or high T2-weighted signal intensities without a diffuse mass effect, associated with 93.8% sensitivity and 100% specificity to BRAF V600E mutations; Group 2 exhibited sharp borders and very or slightly low T1-weighted and very high T2-weighted signal intensities with a diffuse mass effect and 100% sensitivity and specificity for FGFR1 mutations; and Group 3 displayed various characteristics. Histopathological diagnoses including diffuse low-grade glioma and ganglioglioma showed no clear association with genotypes. Notably, postoperative seizure-free rates were higher in Group 1 tumors (BRAF V600E) than in Group 2 tumors (FGFR1). Discussion: These findings suggest that tumor genotype may be predicted by neuroimaging before surgery, providing insights for personalized treatment approaches.

7.
Sci Rep ; 14(1): 16476, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014021

RESUMEN

Pyrolytic synergistic interactions, in which the production of pyrolyzates is enhanced or inhibited, commonly occur during the co-pyrolysis of different polymeric materials, such as plastics and biomass. Although these interactions can increase the yield of desired pyrolysis products under controlled degradation conditions, the desired compounds must be separated from complex pyrolyzates and further purified. To balance these dual effects, this study was aimed at examining pyrolytic synergistic interactions during slow heating co-pyrolysis of biodegradable plastics including polylactic acid (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexaoate) (PHBH) and petroleum-based plastics including high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). Comprehensive investigations based on thermogravimetric analysis, pyrolysis-gas chromatography/mass spectrometry, and evolved gas analysis-mass spectrometry revealed that PLA and PHBH decompose at lower temperatures (273-378 °C) than HDPE, PP, and PS (386-499 °C), with each polymer undergoing independent decomposition without any pyrolytic interactions. Thus, the independent pyrolysis of biodegradable plastics, such as PLA and PHBH, with common plastics, such as HDPE, PP, and PS, can theoretically be realized through temperature control, enabling the selective recovery of their pyrolyzates in different temperature ranges. Thus, pyrolytic approaches can facilitate the treatment of mixed biodegradable and common plastics.


Asunto(s)
Plásticos Biodegradables , Poliésteres , Polipropilenos , Pirólisis , Poliésteres/química , Plásticos Biodegradables/química , Polipropilenos/química , Plásticos/química , Poliestirenos/química , Cromatografía de Gases y Espectrometría de Masas , Calor , Termogravimetría , Polietileno/química
8.
bioRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38979278

RESUMEN

Neurodegenerative diseases are characterised by the abnormal filamentous assembly of specific proteins in the central nervous system 1 . Human genetic studies established a causal role for protein assembly in neurodegeneration 2 . However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in electron cryo-microscopy (cryo-EM) have enabled the structures of the protein filaments to be determined from patient brains 1 . All diseases studied to date have been characterised by the self-assembly of a single intracellular protein in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) Types A and B 3,4 . Here, we used cryo-EM to determine filament structures from the brains of individuals with FTLD-TDP Type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/284-N345 and ANXA11 residues L39-L74 from their respective low-complexity domains (LCDs). Regions of TDP-43 and ANXA11 previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as a ∼22 kDa N-terminal fragment (NTF) lacking the annexin core domain. Immunohistochemistry of brain sections confirmed the co-localisation of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP Type C. This work establishes a central role for ANXA11 in FTLD-TDP Type C. The unprecedented formation of heteromeric amyloid filaments in human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.

10.
Neurobiol Dis ; 199: 106571, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901781

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is the most common gene responsible for familial Parkinson's disease (PD). The gene product of LRRK2 contains multiple protein domains, including armadillo repeat, ankyrin repeat, leucine-rich repeat (LRR), Ras-of-complex (ROC), C-terminal of ROC (COR), kinase, and WD40 domains. In this study, we performed genetic screening of LRRK2 in our PD cohort, detecting sixteen LRRK2 rare variants. Among them, we selected seven variants that are likely to be familial and characterized them in terms of LRRK2 protein function, along with clinical information and one pathological analysis. The seven variants were S1120P and N1221K in the LRR domain; I1339M, S1403R, and V1447M in the ROC domain; and I1658F and D1873H in the COR domain. The kinase activity of the LRRK2 variants N1221K, S1403R, V1447M, and I1658F toward Rab10, a well-known phosphorylation substrate, was higher than that of wild-type LRRK2. LRRK2 D1873H showed enhanced self-association activity, whereas LRRK2 S1403R and D1873H showed reduced microtubule-binding activity. Pathological analysis of a patient with the LRRK2 V1447M variant was also performed, which revealed Lewy pathology in the brainstem. No functional alterations in terms of kinase activity, self-association activity, and microtubule-binding activity were detected in LRRK2 S1120P and I1339M variants. However, the patient with PD carrying LRRK2 S1120P variant also had a heterozygous Glucosylceramidase beta 1 (GBA1) L444P variant. In conclusion, we characterized seven LRRK2 variants potentially associated with PD. Five of the seven variants in different LRRK2 domains exhibited altered properties in kinase activity, self-association, and microtubule-binding activity, suggesting that each domain variant may contribute to disease progression in different ways.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Femenino , Masculino , Anciano , Persona de Mediana Edad , Mutación/genética , Células HEK293 , Predisposición Genética a la Enfermedad/genética , Estudios de Cohortes
12.
Epilepsy Behav Rep ; 26: 100674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764719

RESUMEN

Mild malformation of cortical development with oligodendroglial hyperplasia (MOGHE) is a recently proposed epileptogenic entity that is difficult to detect on MRI. We present a case of MOGHE that was successfully detected on T1WI-chemical shift-selective saturation (CHESS) MRI. The clinical presentation, MRI including T1WI-CHESS, functional images, and pathology findings of a 14-year-old Japanese girl diagnosed with MOGHE are described. T1WI-CHESS revealed an abnormal high signal along the affected lesion, whereas the findings shown by the other MR sequences were less obvious; interictal fluorodeoxyglucose-positron emission tomography indicated slightly decreased accumulation in the lesion, and subtraction ictal single photon emission computed tomography co-registered to MRI showed an increased blood flow. Together these observations suggest that T1WI-CHESS may be a useful MR sequence for detecting the lesions in patients with MOGHE.

13.
Front Aging Neurosci ; 16: 1368839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774265

RESUMEN

Introduction: Alzheimer's disease (AD) is associated with disturbed metabolism, prompting investigations into specific metabolic pathways that may contribute to its pathogenesis and pathology. Sphingolipids have garnered attention due to their known physiological impact on various diseases. Methods: We conducted comprehensive profiling of sphingolipids to understand their possible role in AD. Sphingolipid levels were measured in AD brains, Cerad score B brains, and controls, as well as in induced pluripotent stem (iPS) cells (AD, PS, and control), using liquid chromatography mass spectrometry. Results: AD brains exhibited higher levels of sphingosine (Sph), total ceramide 1-phosphate (Cer1P), and total ceramide (Cer) compared to control and Cerad-B brains. Deoxy-ceramide (Deoxy-Cer) was elevated in Cerad-B and AD brains compared to controls, with increased sphingomyelin (SM) levels exclusively in Cerad-B brains. Analysis of cell lysates revealed elevated dihydroceramide (dhSph), total Cer1P, and total SM in AD and PS cells versus controls. Multivariate analysis highlighted the relevance of Sph, Cer, Cer1P, and SM in AD pathology. Machine learning identified Sph, Cer, and Cer1P as key contributors to AD. Discussion: Our findings suggest the potential importance of Sph, Cer1P, Cer, and SM in the context of AD pathology. This underscores the significance of sphingolipid metabolism in understanding and potentially targeting mechanisms underlying AD.

14.
Commun Biol ; 7(1): 413, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594382

RESUMEN

Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ataxias Espinocerebelosas , Animales , Humanos , Ratones , Citocinas , Células Madre Pluripotentes Inducidas/patología , Ratones Transgénicos , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ubiquitinas
15.
Neuropathology ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558069

RESUMEN

Argyrophilic grain disease (AGD) is one of the major pathological backgrounds of senile dementia. Dementia with grains refers to cases of dementia for which AGD is the sole background pathology responsible for dementia. Recent studies have suggested an association between dementia with grains and parkinsonism. In this study, we aimed to present two autopsy cases of dementia with grains. Case 1 was an 85-year-old man who exhibited amnestic dementia and parkinsonism, including postural instability, upward gaze palsy, and neck and trunk rigidity. The patient was clinically diagnosed with progressive supranuclear palsy and Alzheimer's disease. Case 2 was a 90-year-old man with pure amnestic dementia, clinically diagnosed as Alzheimer's disease. Recently, we used cryo-electron microscopy to confirm that the tau accumulated in both cases had the same three-dimensional structure. In this study, we compared the detailed clinical picture and neuropathological findings using classical staining and immunostaining methods. Both cases exhibited argyrophilic grains and tau-immunoreactive structures in the brainstem and basal ganglia, especially in the nigrostriatal and limbic systems. However, Case 1 had more tau immunoreactive structures. Considering the absence of other disease-specific structures such as tufted astrocytes, astrocytic plaques and globular glial inclusions, lack of conspicuous cerebrovascular disease, and no history of medications that could cause parkinsonism, our findings suggest an association between AGD in the nigrostriatal system and parkinsonism.

16.
Acta Neuropathol Commun ; 12(1): 48, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539238

RESUMEN

Recent studies suggest that increased cerebrospinal fluid (CSF) phospho-tau is associated with brain amyloid pathology rather than the tau pathology. However, confirmation using gold standard neuropathological assessments remains limited. This study aimed to determine background pathologies associated with aberrant CSF p-tau181 and amyloid-beta 1-42 (Aß42) in Alzheimer's disease (AD) and other neurodegenerative diseases. We retrospectively studied all patients with antemortem CSF and postmortem neuropathologic data at our institution. Comprehensive neuropathologic assessments were conducted for all patients, including Thal phase, Braak NFT stage, and CERAD score for AD. CSF concentrations of p-tau181 and Aß42 were compared between AD neuropathological scores at autopsy by one-way ANOVA stratified by other pathologies. A total of 127 patients with AD (n = 22), Lewy body disease (n = 26), primary tauopathies (n = 30), TDP-43 proteinopathy (n = 16), and other diseases (n = 33) were included. The age at lumbar puncture was 76.3 ± 9.1 years, 40.8% were female, and median time from lumbar puncture to autopsy was 637 (175-1625) days. While Braak NFT 0-II was prevalent without amyloid pathology, Braak NFT ≥IV was observed exclusively in patients with amyloid pathology. Stratified analyses showed that CSF p-tau181 was slightly but significantly higher in patients with high Thal phase or CERAD score even in those with Braak NFT 0-II at autopsy. In patients with amyloid pathology, CSF p-tau181 was significantly and more profoundly elevated in those with Braak NFT ≥III at autopsy. CSF Aß42 was lower in patients with high amyloid pathological scores. However, 34% with Thal ≤ 2 and 38% with CERAD ≤ sparse also showed decreased Aß42. Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) were overrepresented in this group. These results neuropathologically confirmed previous studies that CSF p-tau181 levels were slightly elevated with amyloid pathology alone and were even higher with tau pathology, and that CSFAß42 can be decreased in PSP/CBD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/patología , Estudios Retrospectivos , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Amiloide , Biomarcadores/líquido cefalorraquídeo
17.
Alzheimers Res Ther ; 16(1): 45, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414085

RESUMEN

BACKGROUND: Polygenic effects have been proposed to account for some disease phenotypes; these effects are calculated as a polygenic risk score (PRS). This score is correlated with Alzheimer's disease (AD)-related phenotypes, such as biomarker abnormalities and brain atrophy, and is associated with conversion from mild cognitive impairment (MCI) to AD. However, the AD PRS has been examined mainly in Europeans, and owing to differences in genetic structure and lifestyle, it is unclear whether the same relationships between the PRS and AD-related phenotypes exist in non-European populations. In this study, we calculated and evaluated the AD PRS in Japanese individuals using genome-wide association study (GWAS) statistics from Europeans. METHODS: In this study, we calculated the AD PRS in 504 Japanese participants (145 cognitively unimpaired (CU) participants, 220 participants with late mild cognitive impairment (MCI), and 139 patients with mild AD dementia) enrolled in the Japanese Alzheimer's Disease Neuroimaging Initiative (J-ADNI) project. In order to evaluate the clinical value of this score, we (1) determined the polygenic effects on AD in the J-ADNI and validated it using two independent cohorts (a Japanese neuropathology (NP) cohort (n = 565) and the North American ADNI (NA-ADNI) cohort (n = 617)), (2) examined the AD-related phenotypes associated with the PRS, and (3) tested whether the PRS helps predict the conversion of MCI to AD. RESULTS: The PRS using 131 SNPs had an effect independent of APOE. The PRS differentiated between CU participants and AD patients with an area under the curve (AUC) of 0.755 when combined with the APOE variants. Similar AUC was obtained when PRS calculated by the NP and NA-ADNI cohorts was applied. In MCI patients, the PRS was associated with cerebrospinal fluid phosphorylated-tau levels (ß estimate = 0.235, p value = 0.026). MCI with a high PRS showed a significantly increased conversion to AD in APOE ε4 noncarriers with a hazard rate of 2.22. In addition, we also developed a PRS model adjusted for LD and observed similar results. CONCLUSIONS: We showed that the AD PRS is useful in the Japanese population, whose genetic structure is different from that of the European population. These findings suggest that the polygenicity of AD is partially common across ethnic differences.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Estudio de Asociación del Genoma Completo , Japón , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Puntuación de Riesgo Genético , Apolipoproteínas E/genética
18.
Neuropathology ; 44(4): 304-313, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38353038

RESUMEN

Methionine/valine (MV) 2 type of sporadic Creutzfeldt-Jakob (sCJD) is divided into three subtypes based on neuropathological criteria: MV2-kuru (MV2K), MV2-cortical (MV2C), and MV2K + C, exhibiting the co-occurrence of these two pathological features. We report an autopsy case of MV2K + C subtype of sCJD. A 46-year-old Japanese man began to make mistakes at work. Two months later, he gradually developed gait instability. The initial neurological examination revealed limb ataxia and myoclonus. Diffusion-weighted images (DWI) showed a hyperintensity in the right frontal cortex, basal ganglia, and thalamus. Ten months after the onset of disease, he fell into akinetic mutism. He died at 47 years of age, 12 months after the initial presentation. Pathological investigation revealed microvacuolation and confluent vacuoles in the cerebral cortex. In the basal ganglia and thalamus, there was severe neuronal loss and gliosis with mild spongiform change. Kuru plaques were found within the cerebellum. Prion protein (PrP) immunostaining revealed synaptic, perivacuolar, perineuronal, and plaque-like deposits in the cerebral cortex. There were synaptic and plaque-like PrP deposits in the basal ganglia, thalamus, and granular cell layer of the cerebellum. In these areas, plaque-like deposits mainly consisted of small deposits, whereas plaque-like deposits in the cerebral cortex consisted both of coarse granular and small deposits. Analysis of the PrP gene showed no pathogenic mutations, and Western blot examination revealed a mixture of type 2 and intermediate-type PrP. The progressive cognitive decline and ataxia in addition to the hyperintensity in the basal ganglia and/or thalamus on DWI are the basis for clinical diagnosis of MV2. The severe gliosis in the basal ganglia and various morphologies of plaque-like deposits that differ by the region may be characteristic of MV2K + C. Detailed neuropathological examination together with Western blot analysis is important to collect more cases for elucidating the pathogenesis of MV2K + C.


Asunto(s)
Autopsia , Síndrome de Creutzfeldt-Jakob , Humanos , Síndrome de Creutzfeldt-Jakob/patología , Síndrome de Creutzfeldt-Jakob/genética , Masculino , Persona de Mediana Edad , Encéfalo/patología , Metionina
20.
Environ Sci Technol ; 58(3): 1423-1440, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38197317

RESUMEN

Plastic waste has emerged as a serious issue due to its impact on environmental degradation and resource scarcity. Plastic recycling, especially of halogen-containing plastics, presents challenges due to potential secondary pollution and lower-value implementations. Chemical recycling via pyrolysis is the most versatile and robust approach for combating plastic waste. In this Review, we present recent advancements in halogen-plastic pyrolysis for resource utilization and the potential pathways from "reducing to recycling to upcycling" halogens. We emphasize the advanced management of halogen-plastics through copyrolysis with solid wastes (waste polymers, biomass, coal, etc.), which is an efficient method for dealing with mixed wastes to obtain high-value products while reducing undesirable substances. Innovations in catalyst design and reaction configurations for catalytic pyrolysis are comprehensively evaluated. In particular, a tandem catalysis system is a promising route for halogen removal and selective conversion of targeted products. Furthermore, we propose novel insights regarding the utilization and upcycling of halogens from halogen-plastics. This includes the preparation of halogen-based sorbents for elemental mercury removal, the halogenation-vaporization process for metal recovery, and the development of halogen-doped functional materials for new materials and energy applications. The reutilization of halogens facilitates the upcycling of halogen-plastics, but many efforts are needed for mutually beneficial outcomes. Overall, future investigations in the development of copyrolysis and catalyst-driven technologies for upcycling halogen-plastics are highlighted.


Asunto(s)
Halógenos , Plásticos , Plásticos/química , Pirólisis , Reciclaje , Residuos Sólidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA