RESUMEN
Adult T-cell leukemia (ATL) is a peripheral T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). Microsatellite instability (MSI) has been observed in ATL cells. Although MSI results from impaired mismatch repair (MMR) pathway, no null mutations in the genes encoding MMR factors are detectable in ATL cells. Thus, it is unclear whether or not impairment of MMR causes the MSI in ATL cells. HTLV-1 bZIP factor (HBZ) protein interacts with numerous host transcription factors and significantly contributes to disease pathogenesis and progression. Here we investigated the effect of HBZ on MMR in normal cells. The ectopic expression of HBZ in MMR-proficient cells induced MSI, and also suppressed the expression of several MMR factors. We then hypothesized that the HBZ compromises MMR by interfering with a transcription factor, nuclear respiratory factor 1 (NRF-1), and identified the consensus NRF-1 binding site at the promoter of the gene encoding MutS homologue 2 (MSH2), an essential MMR factor. The luciferase reporter assay revealed that NRF-1 overexpression enhanced MSH2 promoter activity, while co-expression of HBZ reversed this enhancement. These results supported the idea that HBZ suppresses the transcription of MSH2 by inhibiting NRF-1. Our data demonstrate that HBZ causes impaired MMR, and may imply a novel oncogenesis driven by HTLV-1.
Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Adulto , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Reparación de la Incompatibilidad de ADN , Proteínas de los Retroviridae/genética , Proteínas de los Retroviridae/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Leucemia-Linfoma de Células T del Adulto/patologíaRESUMEN
A new technique, surface-enhanced infrared absorption (SEIRA) spectroscopy, was used for the structural investigation of lanthanide (Ln) and actinide (An) complexes containing organic ligands. We synthesized thiol derivatives of organic ligands with coordination sites similar to those of 2-[N-methyl-N-hexanethiol-amino]-2-oxoethoxy-[N',N'-diethyl]-acetamide [diglycolamide (DGA)], Cyanex-272, and N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN), which have been used for separating Ln and An through solvent extraction. These ligands were attached on a gold surface deposited on an Si prism through S-Au covalent bonds; the gold surface enhanced the IR absorption intensity of the ligands. Aqueous solutions of Ln (Eu3+, Gd3+, and Tb3+) and An (Am3+) ions were loaded onto the gold surface to form ion complexes. The IR spectra of the ion complexes were obtained using Fourier transform infrared spectroscopy in the attenuated total reflection mode. In this study, we developed a new sample preparation method for SEIRA spectroscopy that enabled us to obtain the IR spectra of the complexes with a small amount of ion solution (5 µL). This is a significant advantage for the IR measurement of radiotoxic Am3+ complexes. In the IR spectra of DGA, the band attributed to CâO stretching vibrations at â¼1630 cm-1 shifted to a lower wavenumber by â¼20 cm-1 upon complexation with Ln and An ions. Moreover, the amount of the red shift was inversely proportional to the extraction equilibrium constant reported in previous studies on solvent extraction. The coordination ability of DGA toward Ln and An ions could be assessed using the band position of the CâO band. The Cyanex-272- and TPEN-like ligands synthesized in this report also showed noticeable SEIRA signals for Ln and An complexes. This study indicates that SEIRA spectroscopy can be used for the structural investigation of ion complexes and provides a microscopic understanding of selective extraction of Ln and An.
RESUMEN
The odors and emanations released from the human body can provide important information about the health status of individuals and the presence or absence of diseases. Since these components often emanate from the body surface in very small quantities, a simple sampling and sensitive analytical method is required. In this study, we developed a non-invasive analytical method for the measurement of the body odor component 2-nonenal by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry by selective ion monitoring. Using a StableFlex PDMS/DVB fiber, 2-nonenal was efficiently extracted and enriched by fiber exposition at 50 °C for 45 min and was separated within 10 min using a DB-1 capillary column. Body odor sample was easily collected by gauze wiping. The limit of detection of 2-nonenal collected in gauze was 22 pg (S/N = 3), and the linearity was obtained in the range of 1-50 ng with a correlation coefficient of 0.991. The method successfully analyzed 2-nonenal in skin emissions and secretions and was applied to the analysis of body odor changes in various lifestyles, including the use of cosmetics, food intake, cigarette smoking, and stress load.
Asunto(s)
Aldehídos/análisis , Odorantes/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Límite de Detección , Microextracción en Fase SólidaRESUMEN
PURPOSE: Glioblastoma is still intractable despite the progress in therapies, and the intractability is attributable to a minor population of stem-like tumor cells. As a niche harboring quiescent stem-like tumor cells with potentially high tumorigenicity, we have specified an area around large ischemic necrosis, termed 'peri-necrotic niche', in glioblastoma. In this study, the behavior of tumor cells inside and outside the peri-necrotic niche was analyzed to find out molecules responsible for reactivation of quiescent stem-like tumor cells to proliferate outside the niche. METHODS: Expression of Ki-67 and GINS complex composed of SLD5, PSF1, PSF2 and PSF3 was analyzed by immunohistochemistry in human glioblastoma tissue samples. Proliferation assays, immunoblotting and siRNA experiments were performed using a glioblastoma cell line. RESULTS: Immunohistochemical analysis revealed quiescent and proliferative phenotypes of tumor cells inside and outside the niche, respectively, and the proliferation was spatially correlated with the expression of GINS components in tumor cells. To mimic the tissue microenvironment inside versus outside the niche, glioblastoma cells were cultured under hypoxic versus normoxic conditions, or without versus with serum. Quiescence and proliferation of tumor cells were reversibly determined by the microenvironment inside and outside the niche, respectively, and proliferative activities paralleled the expression levels of GINS components. Furthermore, the reactivation of proliferation after reoxygenation or serum replenishment was suppressed in quiescent tumor cells with PSF1 knockdown. CONCLUSIONS: These findings indicate the essential role of GINS complex in the switch between quiescence and proliferation of tumor cells inside and outside the peri-necrotic niche.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Glioblastoma/patología , Necrosis , Células Madre Neoplásicas/patología , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Pronóstico , Células Tumorales CultivadasRESUMEN
Two stable thiolate-protected gold clusters (Au-SR), Au130 and Au187 clusters, were synthesized to obtain a better understanding of the size dependence of the origin of the stability of Au-SR clusters. These clusters were synthesized by employing different preparation conditions from those used to synthesize previously reported magic gold clusters; in particular, a lower [RSH] to [AuCl4(-)] molar ratio ([AuCl4(-)]/[RSH] = 1:1) was used than that used to prepare Au25(SR)18, Au38(SR)24, Au68(SR)34, Au102(SR)44, and Au144(SR)60 (id. = 1:4-12). The two clusters thus synthesized were separated from the mixture by high-performance liquid chromatography with reverse-phase columns. Mass spectrometry of the products revealed the presence of two clusters with chemical compositions of Au130(SC12H25)50 and Au187(SC12H25)68. The origin of the stability of these two clusters and the size dependence of the origin of the stability of thiolate-protected gold clusters were discussed in terms of the total number of valence electrons.
RESUMEN
In Gram-negative bacteria, lipoproteins are targeted to either the inner or outer membrane depending on their sorting signals. An ABC transporter LolCDE complex in Escherichia coli releases outer membrane-specific lipoproteins. Inner membrane-specific lipoproteins remain in the inner membrane because they each have a LolCDE-avoidance signal and therefore are not released by LolCDE. Only the LolC(A40P) mutation was previously found to cause outer membrane localization of lipoproteins despite their inner membrane-retention signals. Here, we isolated several new LolCDE mutants that cause outer membrane localization of lipoproteins possessing LolCDE-avoidance signals. Mutations were found in all three subunits of LolCDE, including the cytoplasmic ATPase subunit LolD. However, the extent of outer membrane sorting of inner membrane-specific lipoproteins differed depending on the mutation. Based on these observations, the molecular events underlying the recognition of lipoproteins by the LolCDE complex are discussed.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Aldehído Oxidorreductasas/genética , Membrana Celular/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Hemina/química , Hemina/metabolismo , MutaciónRESUMEN
We report a case of multiple bone metastases from gastric cancer treated with combination chemotherapy of S-1 and CDDP. A 54-year-old man underwent distal gastrectomy for gastric cancer (Stage II) in March 2003. Multiple bone metastases complicated with DIC were diagnosed in September 2005. The patient was treated with combination chemotherapy of S-1 and CDDP. S-1 (80 mg/m2/day) was administered for 21 days followed by 14 days rest as one course. CDDP (60 mg/m2) administration was begun 8 days after the start of S-1. After one course of the treatment, DIC was resolved. The abnormal uptake at the bone metastases was found to have decreased by bone scintigraphy. Bone metastases recurred in April 2006. Although combination chemotherapy of S-1 and DOC was administered, the patient died of DIC in August 2006. Combination chemotherapy of S-1 and CDDP is considered effective treatment for prolonging survival in cases of gastric cancer with bone metastases.