Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Front Neural Circuits ; 18: 1342576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434487

RESUMEN

In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons. This imprinting not only increases the sensitivity to the exposed odor, but also imposes the positive quality on imprinted memory. External odor information represented as an odor map in the OB is transmitted to the olfactory cortex (OC) and amygdala for decision making to elicit emotional and behavioral outputs using two distinct neural pathways, innate and learned. Innate olfactory circuits start to work right after birth, whereas learned circuits become functional later on. In this paper, the recent progress will be summarized in the study of olfactory circuit formation and odor perception in mice. We will also propose new hypotheses on the timing and gating of olfactory circuit activity in relation to the respiration cycle.


Asunto(s)
Sensación , Olfato , Animales , Ratones , Odorantes , Amígdala del Cerebelo , Percepción
2.
Front Behav Neurosci ; 16: 943647, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783233

RESUMEN

In mammals, odor information detected in the olfactory epithelium is converted to a topographic map of activated glomeruli in the olfactory bulb. Odor signals are then conveyed by projection neurons to the olfactory cortex for decision making. Odor information is processed by two distinct pathways, one is innate and the other is learned, which are separately activated during exhalation and inhalation, respectively. There are two types of odor signals, exteroceptive and interoceptive, which are also processed in different phases of respiration. Exteroceptive sensory information whether attractive/pleasant or aversive/stressful, is evaluated by the valence regions in the amygdala. Stress is an alert signal telling the body to take an action so that the normal condition can be recovered. When the odor quality is negative, the brain sets up a behavioral strategy to avoid the danger or to improve the situation. In this review article, we will describe the recent progress in the study of olfactory perception focusing on stress responses to external and internal odors.

3.
Front Neural Circuits ; 16: 861800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431818

RESUMEN

In the mouse olfactory system, odor signals detected in the olfactory epithelium are converted to a topographic map of activated glomeruli in the olfactory bulb. The map information is then conveyed by projection neurons, mitral cells and tufted cells, to various areas in the olfactory cortex. An odor map is transmitted to the anterior olfactory nucleus by tufted cells for odor identification and recollection of associated memory for learned decisions. For instinct decisions, odor information is directly transmitted to the valence regions in the amygdala by specific subsets of mitral cells. Transmission of orthonasal odor signals through these two distinct pathways, innate and learned, are closely related with exhalation and inhalation, respectively. Furthermore, the retronasal/interoceptive and orthonasal/exteroceptive signals are differentially processed during the respiratory cycle, suggesting that these signals are processed in separate areas of the olfactory bulb and olfactory cortex. In this review article, the recent progress is summarized for our understanding of the olfactory circuitry and processing of odor signals during respiration.


Asunto(s)
Odorantes , Bulbo Olfatorio , Amígdala del Cerebelo , Animales , Ratones , Vías Olfatorias/fisiología , Respiración , Olfato/fisiología
4.
PLoS One ; 16(8): e0255927, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34379692

RESUMEN

This paper introduces an enhanced MSM (Mutual Subspace Method) methodology for gait recognition, to provide robustness to variations in walking speed. The enhanced MSM (eMSM) methodology expands and adapts the MSM, commonly used for face recognition, which is a static/physiological biometric, to gait recognition, which is a dynamic/behavioral biometrics. To address the loss of accuracy during calculation of the covariance matrix in the PCA step of MSM, we use a 2D PCA-based mutual subspace. Furhtermore, to enhance the discrimination capability, we rotate images over a number of angles, which enables us to extract richer gait features to then be fused by a boosting method. The eMSM methodology is evaluated on existing data sets which provide variable walking speed, i.e. CASIA-C and OU-ISIR gait databases, and it is shown to outperform state-of-the art methods. While the enhancement to MSM discussed in this paper uses combinations of 2D-PCA, rotation, boosting, other combinations of operations may also be advantageous.


Asunto(s)
Marcha/fisiología , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Aprendizaje Profundo , Humanos , Análisis de Componente Principal
5.
Elife ; 102021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33780330

RESUMEN

In mice, early exposure to environmental odors affects social behaviors later in life. A signaling molecule, Semaphorin 7A (Sema7A), is induced in the odor-responding olfactory sensory neurons. Plexin C1 (PlxnC1), a receptor for Sema7A, is expressed in mitral/tufted cells, whose dendrite-localization is restricted to the first week after birth. Sema7A/PlxnC1 signaling promotes post-synaptic events and dendrite selection in mitral/tufted cells, resulting in glomerular enlargement that causes an increase in sensitivity to the experienced odor. Neonatal odor experience also induces positive responses to the imprinted odor. Knockout and rescue experiments indicate that oxytocin in neonates is responsible for imposing positive quality on imprinted memory. In the oxytocin knockout mice, the sensitivity to the imprinted odor increases, but positive responses cannot be promoted, indicating that Sema7A/PlxnC1 signaling and oxytocin separately function. These results give new insights into our understanding of olfactory imprinting during the neonatal critical period.


Asunto(s)
Antígenos CD/genética , Proteínas del Tejido Nervioso/genética , Percepción Olfatoria/genética , Neuronas Receptoras Olfatorias/fisiología , Receptores de Superficie Celular/genética , Semaforinas/genética , Transducción de Señal/genética , Animales , Antígenos CD/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo
6.
Annu Rev Physiol ; 83: 231-256, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33228453

RESUMEN

In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.


Asunto(s)
Bulbo Olfatorio/fisiología , Corteza Olfatoria/fisiología , Olfato/fisiología , Amígdala del Cerebelo/fisiología , Animales , Humanos , Neuronas/fisiología
7.
Dev Growth Differ ; 62(4): 199-213, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32112394

RESUMEN

In mammals, odorants induce various behavioral responses that are critical to the survival of the individual and species. Binding signals of odorants to odorant receptors (ORs) expressed in the olfactory epithelia are converted to an odor map, a pattern of activated glomeruli, in the olfactory bulb (OB). This topographic map is used to identify odorants for memory-based learned decisions. In the embryo, a coarse olfactory map is generated in the OB by a combination of dorsal-ventral and anterior-posterior targeting of olfactory sensory neurons (OSNs), using specific sets of axon-guidance molecules. During the process of OSN projection, odor signals are sorted into distinct odor qualities in separate functional domains in the OB. Odor information is then conveyed by the projection neurons, mitral/tufted cells, to various regions in the olfactory cortex, particularly to the amygdala for innate olfactory decisions. Although the basic architecture of hard-wired circuits is generated by a genetic program, innate olfactory responses are modified by neonatal odor experience in an activity-dependent manner. Stimulus-driven OR activity promotes post-synaptic events and dendrite selection in the responding glomeruli making them larger. As a result, enhanced odor inputs in neonates establish imprinted olfactory memory that induces attractive responses in adults, even when the odor quality is innately aversive. In this paper, I will provide an overview of the recent progress made in the olfactory circuit formation in mice.


Asunto(s)
Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Animales , Ratones , Odorantes , Receptores Odorantes/metabolismo
9.
Nat Commun ; 10(1): 3036, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292439

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Commun Biol ; 2: 14, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30652126

RESUMEN

In the mouse olfactory bulb, neural map topography is largely established by axon-axon interactions of olfactory sensory neurons (OSNs). However, to make the map functional, the OSNs must make proper connections to second-order neurons, the mitral cells. How do the mitral-cell dendrites find their partner glomeruli for synapse formation with OSN axons? Here, we analyze dendrite connections of mitral cells in various mutant mice in which glomerular formation is perturbed. Our present results support the proximity model, whereby mitral cells tend to connect primary dendrites to the nearest neighboring glomeruli regardless of their odorant receptor identities. The physical location of glomeruli rather than the odorant-receptor specificity appears to play a key role in matching mitral cells with their partner OSN axons.


Asunto(s)
Dendritas/metabolismo , Neurópilo/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Femenino , Ratones , Ratones Noqueados , Microscopía Confocal , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/metabolismo
11.
Nat Commun ; 9(1): 1842, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743476

RESUMEN

In mammals, neural circuits are formed based on a genetic program and further refined by neuronal activity during the neonatal period. We report that in the mouse olfactory system, the glomerular map is not merely refined but newly connected to second-order neurons by odorant-receptor-derived neuronal activity. Here, we analyzed a pair of molecules, Sema7A, expressed in olfactory sensory neurons (OSNs) in an activity-dependent manner, and PlxnC1, localized to dendrites of mitral/tufted (M/T) cells in the first week after birth. In Sema7A or PlxnC1 knockout (KO) mice, initiation of synapse formation and dendrite selection of M/T cells were perturbed. Reconstitution and rescue experiments demonstrated that Sema7A-PlxnC1 interaction is essential to form the post-synaptic assembly. Pharmacological blocking experiments indicated that synaptic transmission triggers primary dendrite selection by synaptic competition. We conclude that Sema7A signaling is key to inducing activity-dependent post-synapse events and dendrite selection in M/T-cells during the neonatal period.


Asunto(s)
Antígenos CD/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Sinapsis/metabolismo , Animales , Antígenos CD/genética , Dendritas/genética , Dendritas/metabolismo , Femenino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Unión Proteica , Receptores de Superficie Celular/genética , Semaforinas/genética , Transducción de Señal , Olfato , Sinapsis/genética , Transmisión Sináptica
12.
Nat Commun ; 8: 15977, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28731029

RESUMEN

Odour information induces various innate responses that are critical to the survival of the individual and for the species. An axon guidance molecule, Neuropilin 2 (Nrp2), is known to mediate targeting of olfactory sensory neurons (primary neurons), to the posteroventral main olfactory bulb (PV MOB) in mice. Here we report that Nrp2-positive (Nrp2+) mitral cells (MCs, second-order neurons) play crucial roles in transmitting attractive social signals from the PV MOB to the anterior part of medial amygdala (MeA). Semaphorin 3F, a repulsive ligand to Nrp2, regulates both migration of Nrp2+ MCs to the PV MOB and their axonal projection to the anterior MeA. In the MC-specific Nrp2 knockout mice, circuit formation of Nrp2+ MCs and odour-induced attractive social responses are impaired. In utero, electroporation demonstrates that activation of the Nrp2 gene in MCs is sufficient to instruct their circuit formation from the PV MOB to the anterior MeA.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Orientación del Axón/genética , Movimiento Celular/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-2/genética , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Amígdala del Cerebelo/citología , Animales , Electroporación , Ratones , Ratones Noqueados , Vías Nerviosas , Odorantes , Bulbo Olfatorio/citología , Neuronas Receptoras Olfatorias/citología , Conducta Social
13.
Nat Commun ; 8: 16011, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28685774

RESUMEN

Fox odour 2,4,5-trimethyl thiazoline (TMT) is known to activate multiple glomeruli in the mouse olfactory bulb (OB) and elicits strong fear responses. In this study, we screened TMT-reactive odourant receptors and identified Olfr1019 with high ligand reactivity and selectivity, whose glomeruli are located in the posterodorsal OB. In the channelrhodopsin knock-in mice for Olfr1019, TMT-responsive olfactory-cortical regions were activated by photostimulation, leading to the induction of immobility, but not aversive behaviour. Distribution of photoactivation signals was overlapped with that of TMT-induced signals, but restricted to the narrower regions. In the knockout mice, immobility responses were reduced, but not entirely abolished likely due to the compensatory function of other TMT-responsive glomeruli. Our results demonstrate that the activation of a single glomerular species in the posterodorsal OB is sufficient to elicit immobility responses and that TMT-induced fear may be separated into at least two different components of immobility and aversion.


Asunto(s)
Miedo/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Percepción Olfatoria/fisiología , Receptores Odorantes/genética , Olfato/fisiología , Tiazoles/farmacología , Animales , Agentes Aversivos/aislamiento & purificación , Agentes Aversivos/farmacología , Conducta Animal/efectos de los fármacos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Miedo/psicología , Heces/química , Zorros , Reacción Cataléptica de Congelación/fisiología , Expresión Génica , Técnicas de Sustitución del Gen , Masculino , Ratones , Odorantes/análisis , Bulbo Olfatorio/fisiología , Estimulación Luminosa , Receptores Odorantes/metabolismo , Técnicas Estereotáxicas , Tiazoles/aislamiento & purificación
14.
Nat Neurosci ; 18(10): 1432-3, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26404718
15.
Dev Neurobiol ; 75(6): 594-607, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25649346

RESUMEN

In the mouse olfactory system, various odorants are detected by approximately 1000 different odorant receptors (ORs) expressed in the olfactory sensory neurons (OSNs). It is well established that each OSN expresses only one functional OR gene in a monoallelic manner. Furthermore, OSN axons expressing the same OR converge to a set of glomeruli in the olfactory bulb (OB). During embryonic development, a coarse map is formed by the combination of two genetically programmed processes. One is OR-independent axonal projection along the dorsal-ventral (D-V) axis, and the other is OR-dependent projection along the anterior-posterior (A-P) axis. D-V projection is regulated by the anatomical location of OSNs within the olfactory epithelium (OE), whereas A-P projection is instructed by expressed OR molecules using cyclic adenosine monophosphate (cAMP) signals. After birth, the map is further refined in an activity-dependent manner by its conversion from a continuous to a discrete map through segregation of glomerular structures. Here, we summarize recent progress from our laboratory in understanding neural map formation in the mouse olfactory system.


Asunto(s)
Mapeo Encefálico , Vías Olfatorias/citología , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/fisiología , Animales , Axones , Ratones , Mutación/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Transducción de Señal
16.
Cell Mol Life Sci ; 71(16): 3049-57, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24638094

RESUMEN

In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the "one neuron-one receptor" rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the "one glomerulus-one receptor" rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal-ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.


Asunto(s)
Vías Olfatorias/embriología , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/embriología , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Animales , Axones/metabolismo , AMP Cíclico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Modelos Moleculares , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/citología , Receptores Acoplados a Proteínas G/metabolismo
17.
Neuron ; 81(1): 165-78, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24361078

RESUMEN

Musk odorants are used widely in cosmetic industries because of their fascinating animalic scent. However, how this aroma is perceived in the mammalian olfactory system remains a great mystery. Here, we show that muscone, one musk odor secreted by various animals from stink glands, activates a few glomeruli clustered in a neuroanatomically unique anteromedial olfactory bulb. The muscone-responsive glomeruli are highly specific to macrocyclic ketones; interestingly, other synthetic musk odorants with nitro or polycyclic moieties or ester bonds activate distinct but nearby glomeruli. Anterodorsal bulbar lesions cause muscone anosmia, suggesting that this region is involved in muscone perception. Finally, we identified the mouse olfactory receptor, MOR215-1, that was a specific muscone receptor expressed by neurons innervating the muscone-responsive anteromedial glomeruli and also the human muscone receptor, OR5AN1. The current study documents the olfactory neural pathway in mice that senses and transmits musk signals from receptor to brain.


Asunto(s)
Ácidos Grasos Monoinsaturados , Bulbo Olfatorio/citología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Animales , Colforsina/farmacología , Cicloparafinas/farmacología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Odorantes , Bulbo Olfatorio/cirugía , Vías Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Odorantes/genética , Olfato/efectos de los fármacos , Xenopus laevis
18.
Cell ; 154(6): 1314-25, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034253

RESUMEN

G-protein-coupled receptors (GPCRs) are known to possess two different conformations, active and inactive, and they spontaneously alternate between the two in the absence of ligands. Here, we analyzed the agonist-independent GPCR activity for its possible role in receptor-instructed axonal projection. We generated transgenic mice expressing activity mutants of the ß2-adrenergic receptor, a well-characterized GPCR with the highest homology to odorant receptors (ORs). We found that mutants with altered agonist-independent activity changed the transcription levels of axon-targeting molecules--e.g., Neuropilin-1 and Plexin-A1--but not of glomerular segregation molecules--e.g., Kirrel2 and Kirrel3--thus causing shifts in glomerular locations along the anterior-posterior (A-P) axis. Knockout and in vitro experiments demonstrated that Gs, but not Golf, is responsible for mediating the agonist-independent GPCR activity. We conclude that the equilibrium of conformational transitions set by each OR is the major determinant of expression levels of A-P-targeting molecules.


Asunto(s)
Axones/metabolismo , Vías Olfatorias/embriología , Receptores Odorantes/metabolismo , Células Receptoras Sensoriales/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Ratones , Ratones Noqueados , Ratones Transgénicos , Vías Olfatorias/citología , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/genética
19.
Dev Neurobiol ; 73(11): 828-40, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23821580

RESUMEN

In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) correlate with their axonal projection sites along the dorsoventral axis of the olfactory bulb (OB). We have previously reported that Neuropilin-2 expressed by ventral-zone OSNs contributes to the segregation of dorsal and ventral OSN axons, and that Slit is acting as a negative land mark to restrict the projection of Robo2+, early-arriving OSN axons to the embryonic OB. Here, we report that another guidance receptor, Robo1, also plays an important role in guiding OSN axons. Knockout mice for Robo1 demonstrated defects in targeting of OSN axons to the OB. Although Robo1 is colocalized with dorsal-zone OSN axons, it is not produced by OSNs, but instead by olfactory ensheathing cells. These findings indicate a novel strategy of axon guidance in the mouse olfactory system during development.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas Receptoras Olfatorias/embriología , Neuronas Receptoras Olfatorias/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bulbo Olfatorio/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Roundabout
20.
Sci Rep ; 3: 1716, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23612706

RESUMEN

All vertebrates, from jawless fish to mammals, possess adaptive immune systems that can detect and inactivate non-self-antigens through a vast repertoire of antigen receptors. Unlike jawed vertebrates, the hagfish utilizes variable lymphocyte receptors (VLRs) that are unrelated to immunoglobulin molecules but are diversified by copy-choice gene conversion mechanism. Here, we report that hagfish VLRs react with allogenic leukocyte antigens but not with self-antigens. We found that a highly polymorphic membrane protein, NICIR3, is recognized by VLRs as an allogenic leukocyte antigen (ALA). In a serological cross-reactivity test, a close correlation was observed between the amino acid differences in the protein sequences and the VLR cross-reactivities. This leukocyte antigen was predominantly expressed in phagocytic leukocytes, where it was associated with phagocytosed protein antigens. These findings suggest that a polymorphic leukocyte antigen, NICIR3/ALA, plays a pivotal role in jawless vertebrate adaptive immunity.


Asunto(s)
Anguila Babosa/inmunología , Antígenos de Histocompatibilidad/inmunología , Leucocitos/inmunología , Inmunidad Adaptativa/inmunología , Animales , Anticuerpos/inmunología , Linfocitos/inmunología , Proteínas de la Membrana/inmunología , Fagocitos/inmunología , Receptores de Antígenos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA