Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(12)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38805346

RESUMEN

Tumor evolution is driven by genetic variation; however, it is the tumor microenvironment (TME) that provides the selective pressure contributing to evolution in cancer. Despite high histopathological heterogeneity within glioblastoma (GBM), the most aggressive brain tumor, the interactions between the genetically distinct GBM cells and the surrounding TME are not fully understood. To address this, we analyzed matched primary and recurrent GBM archival tumor tissues with imaging-based techniques aimed to simultaneously evaluate tumor tissues for the presence of hypoxic, angiogenic, and inflammatory niches, extracellular matrix (ECM) organization, TERT promoter mutational status, and several oncogenic amplifications on the same slide and location. We found that the relationships between genetic and TME diversity are different in primary and matched recurrent tumors. Interestingly, the texture of the ECM, identified by label-free reflectance imaging, was predictive of single-cell genetic traits present in the tissue. Moreover, reflectance of ECM revealed structured organization of the perivascular niche in recurrent GBM, enriched in immunosuppressive macrophages. Single-cell spatial transcriptomics further confirmed the presence of the niche-specific macrophage populations and identified interactions between endothelial cells, perivascular fibroblasts, and immunosuppressive macrophages. Our results underscore the importance of GBM tissue organization in tumor evolution and highlight genetic and spatial dependencies.


Asunto(s)
Neoplasias Encefálicas , Matriz Extracelular , Glioblastoma , Recurrencia Local de Neoplasia , Microambiente Tumoral , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/diagnóstico por imagen , Humanos , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Matriz Extracelular/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Análisis Espacial , Masculino , Macrófagos/patología , Femenino , Telomerasa/genética , Análisis de la Célula Individual , Mutación , Persona de Mediana Edad
2.
Cell Rep ; 42(3): 112235, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36920905

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor, with a median survival of ∼15 months. Targeted approaches have not been successful in this tumor type due to the large extent of intratumor heterogeneity. Mosaic amplification of oncogenes suggests that multiple genetically distinct clones are present in each tumor. To uncover the relationships between genetically diverse subpopulations of GBM cells and their native tumor microenvironment, we employ highly multiplexed spatial protein profiling coupled with single-cell spatial mapping of fluorescence in situ hybridization (FISH) for EGFR, CDK4, and PDGFRA. Single-cell FISH analysis of a total of 35,843 single nuclei reveals that tumors in which amplifications of EGFR and CDK4 more frequently co-occur in the same cell exhibit higher infiltration of CD163+ immunosuppressive macrophages. Our results suggest that high-throughput assessment of genomic alterations at the single-cell level could provide a measure for predicting the immune state of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Amplificación de Genes , Hibridación Fluorescente in Situ , Receptores ErbB/genética , Receptores ErbB/metabolismo , Oncogenes , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(43): 26710-26718, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33037152

RESUMEN

Large-scale proteomic methods are essential for the functional characterization of proteins in their native cellular context. However, proteomics has lagged far behind genomic approaches in scalability, standardization, and cost. Here, we introduce in vivo mRNA display, a technology that converts a variety of proteomics applications into a DNA sequencing problem. In vivo-expressed proteins are coupled with their encoding messenger RNAs (mRNAs) via a high-affinity stem-loop RNA binding domain interaction, enabling high-throughput identification of proteins with high sensitivity and specificity by next generation DNA sequencing. We have generated a high-coverage in vivo mRNA display library of the Saccharomyces cerevisiae proteome and demonstrated its potential for characterizing subcellular localization and interactions of proteins expressed in their native cellular context. In vivo mRNA display libraries promise to circumvent the limitations of mass spectrometry-based proteomics and leverage the exponentially improving cost and throughput of DNA sequencing to systematically characterize native functional proteomes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , ARN Mensajero , ADN de Hongos/análisis , ADN de Hongos/genética , Biblioteca de Genes , Proteoma/análisis , Proteoma/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA