Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 8(46)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727722

RESUMEN

Carbapenemase-producing Klebsiella pneumoniae poses a significant public health threat due to its resistance to antibiotics. Siphophage Seifer was isolated and characterized as part of an effort to develop phage therapeutics to control this pathogen. This report describes the complete genome sequence of phage Seifer, which is a distant member of the χ-like siphovirus phage cluster.

2.
Mol Pharm ; 16(4): 1606-1619, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30817887

RESUMEN

Pseudomonas aeruginosa has been detected in the lungs of ∼50% of patients with cystic fibrosis (CF), including 20% of adult CF patients. The majority of these adult patients harbor multi-drug resistant (MDR) strains, limiting the available treatment options. Silver has long been used as a broad-spectrum antimicrobial agent with a low incidence of resistance. Despite low toxicity, poor availability of silver cations mandates a high dosage to effectively eradicate infections. To address this shortcoming of silver, nanoparticles have been used as delivery devices to improve treatment outcomes. Furthermore, studies have demonstrated that synergistic combinations with careful dose calibrations and efficient delivery systems result in superior antimicrobial activity while avoiding potential side effects of both therapeutics. Here 4-epi-minocycline, a metabolite of minocycline, was identified as an active antimicrobial against P. aeruginosa using a high-throughput screen. The antimicrobial activities of 4-epi-minocycline, minocycline, and silver acetate against clinical isolates of P. aeruginosa obtained from CF patients were evaluated in vitro. Next, the synergistic activity of the silver/minocycline combination against P. aeruginosa isolates was investigated using checkerboard assays and identified with end-point colony forming unit determination assays. Finally, nanoparticles coloaded with minocycline and silver were evaluated in vitro for antimicrobial activity. The results demonstrated that both silver and minocycline are potent antimicrobials alone and that the combination allows a reduced dosage of both therapeutics to achieve the same antimicrobial effect. Furthermore, the proposed synergistic silver/minocycline combination can be coloaded into nanoparticles as a next-generation antibiotic to combat the threats presented by MDR pathogens.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Nanopartículas del Metal/química , Minociclina/administración & dosificación , Polifosfatos/química , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Plata/química , Antibacterianos/administración & dosificación , Humanos , Infecciones por Pseudomonas/microbiología
3.
PLoS One ; 14(2): e0211432, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30721244

RESUMEN

R pyocins are ɸCTX-like myophage tailocins of Pseudomonas sp. Adsorption of R pyocins to target strains occurs by the interaction of tail fiber proteins with core lipopolysaccharide (LPS). Here, we demonstrate that N-terminally truncated R pyocin tail fibers corresponding to a region of variation between R-subtypes are sufficient to bind target strains according to R-subtype. We also report the crystal structures of these tail fiber proteins and show that they form an elongated helical trimer composed of three domains arranged linearly from N- to C-terminus: a baseplate proximal head, medial shaft, and distal foot. The head and shaft domains contain novel structural motifs. The foot domain, however, is composed of a conserved jellyroll fold and shares high structural similarity to the tail fiber of myophage AP22, podophage tailspike C-terminal domains (LKA-1 and ɸ297), and several eukaryotic adhesins (discoidin I/II, agglutinin, and octocoral lectin). Many of these proteins bind polysaccharides by means of their distal loop network, a series of highly variable loops at one end of the conserved jellyroll fold backbone. Our structures reveal that the majority of R-subtype specific polymorphisms cluster in patches covering a cleft formed at the oligomeric interface of the head domain and in a large patch covering much of the foot domain, including the distal loop network. Based on the structural variation in distal loops within the foot region, we propose that the foot is the primary sugar-binding domain of R pyocins and R-subtype specific structural differences in the foot domain distal loop network are responsible for binding target strains in an R-subtype dependent manner.


Asunto(s)
Pseudomonas aeruginosa/química , Piocinas/química , Secuencia de Aminoácidos , Sitios de Unión , Biología Computacional , Cristalografía por Rayos X , Genes Bacterianos , Lectinas/química , Modelos Moleculares , Polimorfismo Genético , Dominios Proteicos , Pliegue de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocinas/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA