Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Data Brief ; 54: 110552, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882194

RESUMEN

This article focuses the recovery of prokaryotic organisms including bacteria and archaea from 9 different groups of chicken raised in different farm setups in Pakistan. The groups comprise of three different breeds (Broilers, White Layers, and Black Australorp) of chicken raised in different farming setups that include antibiotic-free control, commercial (open and controlled shed), and backyard farms. We have recovered 569 Metagenomics-Assembled Genomes (MAGs) with a completeness of ≥50 % and contamination of ≤10 %. For each MAG, functional annotations were obtained that include KEGG modules, carbohydrate active enzymes (CAZymes), peptidases, geochemical cycles, antibiotic resistance genes, stress genes, and virulence genes. Furthermore, two different sets of Single Copy Genes (SCGs) were used to construct the phylogenetic trees. Based on the reconstructed phylogeny, phylogenetic gain of each MAG is calculated to give an account of novelty.

2.
Data Brief ; 54: 110487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764451

RESUMEN

This article presents metagenomic-assembled genomes (MAGs) of prokaryotic organisms originating from chicken caeca. The samples originate from broiler chickens, one group was infected with Newcastle Disease Virus (NDV) and one uninfected control group. There were four birds per group. Both groups were raised on commercially available antibiotic free feed under a semi-controlled setup. The binning step of the samples identified 130 MAGs with ≥50 % completion, and ≤10 % contamination. The data presented includes sequences in FASTA format, tables of functional annotation of genes, and data from two different approaches for phylogenetic tree construction using these MAGs. Major geochemical cycles at community level including carbon, sulfur, and nitrogen cycles are also presented.

3.
Front Microbiol ; 14: 1197838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779716

RESUMEN

In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In this study, we have analyzed the temporal profiles of the healthy broiler cecal microbiome from day 3 to day 35 to recover the stable and varying components of microbial communities. During this period, the broilers were fed three different diets chronologically, and therefore, we have recovered signature microbial species that dominate during each dietary regime. Since broilers were raised in multiple pens, we have also parameterized these as an environmental condition to explore microbial niches and their overlap. All of these analyses were performed in view of different parameters such as body weight (BW-mean), feed intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset of microbes that these parameters have a bearing upon. We found that gut microbial communities exhibited strong and statistically significant specificity for several environmental variables. Through regression models, genera that positively/negatively correlate with the bird's age were identified. Some short-chain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and Enterococcus, negatively correlated with the bird's age, which indicated a high disease risk in the initial days. Moreover, the majority of pathways involved in amino acid biosynthesis were also positively correlated with the bird's age. Some probiotic genera associated with improved performance included Oscillospirales; UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In general, predicted antimicrobial resistance genes (piARGs) contributed at a stable level, but there was a slight increase in abundance when the diet was changed. To the best of the authors' knowledge, this is one of the first studies looking at the stability, complexity, and ecology of natural broiler microbiota development in a temporal setting.

4.
Comput Intell Neurosci ; 2022: 2557795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210985

RESUMEN

Diabetes is a chronic disease that can cause several forms of chronic damage to the human body, including heart problems, kidney failure, depression, eye damage, and nerve damage. There are several risk factors involved in causing this disease, with some of the most common being obesity, age, insulin resistance, and hypertension. Therefore, early detection of these risk factors is vital in helping patients reverse diabetes from the early stage to live healthy lives. Machine learning (ML) is a useful tool that can easily detect diabetes from several risk factors and, based on the findings, provide a decision-based model that can help in diagnosing the disease. This study aims to detect the risk factors of diabetes using ML methods and to provide a decision support system for medical practitioners that can help them in diagnosing diabetes. Moreover, besides various other preprocessing steps, this study has used the synthetic minority over-sampling technique integrated with the edited nearest neighbor (SMOTE-ENN) method for balancing the BRFSS dataset. The SMOTE-ENN is a more powerful method than the individual SMOTE method. Several ML methods were applied to the processed BRFSS dataset and built prediction models for detecting the risk factors that can help in diagnosing diabetes patients in the early stage. The prediction models were evaluated using various measures that show the high performance of the models. The experimental results show the reliability of the proposed models, demonstrating that k-nearest neighbor (KNN) outperformed other methods with an accuracy of 98.38%, sensitivity, specificity, and ROC/AUC score of 98%. Moreover, compared with the existing state-of-the-art methods, the results confirm the efficacy of the proposed models in terms of accuracy and other evaluation measures. The use of SMOTE-ENN is more beneficial for balancing the dataset to build more accurate prediction models. This was the main reason it was possible to achieve models more accurate than the existing ones.


Asunto(s)
Diabetes Mellitus , Aprendizaje Automático , Algoritmos , Diabetes Mellitus/diagnóstico , Diagnóstico Precoz , Humanos , Reproducibilidad de los Resultados , Factores de Riesgo
5.
Artículo en Inglés | MEDLINE | ID: mdl-35564493

RESUMEN

COVID-19 is a disease caused by SARS-CoV-2 and has been declared a worldwide pandemic by the World Health Organization due to its rapid spread. Since the first case was identified in Wuhan, China, the battle against this deadly disease started and has disrupted almost every field of life. Medical staff and laboratories are leading from the front, but researchers from various fields and governmental agencies have also proposed healthy ideas to protect each other. In this article, a Systematic Literature Review (SLR) is presented to highlight the latest developments in analyzing the COVID-19 data using machine learning and deep learning algorithms. The number of studies related to Machine Learning (ML), Deep Learning (DL), and mathematical models discussed in this research has shown a significant impact on forecasting and the spread of COVID-19. The results and discussion presented in this study are based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Out of 218 articles selected at the first stage, 57 met the criteria and were included in the review process. The findings are therefore associated with those 57 studies, which recorded that CNN (DL) and SVM (ML) are the most used algorithms for forecasting, classification, and automatic detection. The importance of the compartmental models discussed is that the models are useful for measuring the epidemiological features of COVID-19. Current findings suggest that it will take around 1.7 to 140 days for the epidemic to double in size based on the selected studies. The 12 estimates for the basic reproduction range from 0 to 7.1. The main purpose of this research is to illustrate the use of ML, DL, and mathematical models that can be helpful for the researchers to generate valuable solutions for higher authorities and the healthcare industry to reduce the impact of this epidemic.


Asunto(s)
COVID-19 , Aprendizaje Profundo , COVID-19/epidemiología , Predicción , Humanos , Aprendizaje Automático , Modelos Teóricos , SARS-CoV-2
6.
J Med Internet Res ; 23(6): e28856, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34085938

RESUMEN

BACKGROUND: The use of artificial intelligence has revolutionized every area of life such as business and trade, social and electronic media, education and learning, manufacturing industries, medicine and sciences, and every other sector. The new reforms and advanced technologies of artificial intelligence have enabled data analysts to transmute raw data generated by these sectors into meaningful insights for an effective decision-making process. Health care is one of the integral sectors where a large amount of data is generated daily, and making effective decisions based on these data is therefore a challenge. In this study, cases related to childbirth either by the traditional method of vaginal delivery or cesarean delivery were investigated. Cesarean delivery is performed to save both the mother and the fetus when complications related to vaginal birth arise. OBJECTIVE: The aim of this study was to develop reliable prediction models for a maternity care decision support system to predict the mode of delivery before childbirth. METHODS: This study was conducted in 2 parts for identifying the mode of childbirth: first, the existing data set was enriched and second, previous medical records about the mode of delivery were investigated using machine learning algorithms and by extracting meaningful insights from unseen cases. Several prediction models were trained to achieve this objective, such as decision tree, random forest, AdaBoostM1, bagging, and k-nearest neighbor, based on original and enriched data sets. RESULTS: The prediction models based on enriched data performed well in terms of accuracy, sensitivity, specificity, F-measure, and receiver operating characteristic curves in the outcomes. Specifically, the accuracy of k-nearest neighbor was 84.38%, that of bagging was 83.75%, that of random forest was 83.13%, that of decision tree was 81.25%, and that of AdaBoostM1 was 80.63%. Enrichment of the data set had a good impact on improving the accuracy of the prediction process, which supports maternity care practitioners in making decisions in critical cases. CONCLUSIONS: Our study shows that enriching the data set improves the accuracy of the prediction process, thereby supporting maternity care practitioners in making informed decisions in critical cases. The enriched data set used in this study yields good results, but this data set can become even better if the records are increased with real clinical data.


Asunto(s)
Inteligencia Artificial , Servicios de Salud Materna , Femenino , Humanos , Aprendizaje Automático , Parto , Embarazo , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA