Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Surgeon ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38789384

RESUMEN

BACKGROUND AND OBJECTIVES: Acute appendicitis is one of the most commonly encountered surgical emergencies on a global level. Due to the requirement of an immediate clinical diagnosis and the presence of limited resources, clinicians and diagnosticians refer to scoring systems to diagnose this condition, among which Alvarado and Tzanakis scoring systems are widely used. This meta-analysis aims to compare the diagnostic accuracy of these two systems. METHODS: We searched PubMed, Google Scholar, and SCOPUS databases. All studies that reported diagnostic parameters of Alvarado and Tzanakis scores in patients with suspected acute appendicitis were selected. Diagnostic values such as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were extracted from the selected studies and statistical analysis was performed with Meta Disc 1.4 software. Quality assessment of the selected studies was performed using the QUADAS-2 and QUADAS-C tools. Fourteen studies were included in our meta-analysis which enrolled 2235 patients. RESULTS: The overall sensitivity of the Tzanakis score was calculated as 0.86 (95% CI; 0.84-00.87) while the specificity was 0.73 (95% CI; 0.69-0.78). In addition, the area under the curve (AUC) was 0.9261 (SE; 0.0169) and the diagnostic Odds Ratio (OR) was 22.52 (95% CI; 9.47-53.56). The pooled sensitivity of Alvarado score was 0.67 (95% CI; 0.65-0.69) and the specificity was 0.74 (95% CI; 0.69-0.79). Moreover, the area under the curve (AUC) of the Alvarado score was 0.7389 (SE; 0.0489) and the diagnostic Odds Ratio was 4.92 (95% CI; 2.48-9.75). INTERPRETATION AND CONCLUSION: The Tzanakis scoring system has a higher sensitivity, area under the curve, and diagnostic odds ratio when compared to the Alvarado score. However, the Alvarado score has a marginally better specificity making it more reliable in excluding acute appendicitis.

2.
World J Microbiol Biotechnol ; 40(4): 125, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441800

RESUMEN

Black heart rot is a serious disease of apricot and it has been reported to be caused by Alternaria solani, around the world. The present research was designed to control this disastrous disease using zinc oxide nanoparticles (b-ZnO NPs). These NPs were synthesized in the filtrate of a useful bacterium (Bacillus safensis) and applied to control black heart rot of apricot. After synthesis, the reduction of b-ZnO NPs was confirmed by UV-visible spectroscopy, at 330 nm. Fourier transform infrared (FTIR) spectra ensured the presence of multiple functional groups (alcohols, phenols, carboxylic acids, nitro compounds and amines) on the surface of b-ZnO NPs. X-Ray diffraction (XRD) analysis elucidated their average size (18 nm) while scanning electron microscopy (SEM) micrograph described the spherical shape of b-ZnO NPs. The synthesized b-ZnO NPs were applied in four different concentrations (0.25 mg/ml, 0.50 mg/ml, 0.75 mg/ml, 1.0 mg/ml) under both in vitro and in vivo conditions. These NPs were very efficient in inhibiting mycelial growth (85.1%) of A. solani at 0.75 mg/ml concentration of NPs, in vitro. Same concentration also performed best, in vivo, and significantly reduced disease incidence (by 67%) on self-inoculated apricot fruit. Apart from this, application of b-ZnO NPs helped apricot fruit to maintain its quality under fungal-stress conditions. The decay of apricot fruit was reduced and they maintained greater firmness and higher weight. Moreover, b-ZnO NPs treated fruits controlled black heart rot disease by maintaining higher contents of ascorbic acid, soluble sugars and carotenoids. These b-ZnO NPs were produced in powder form for their easy carriage to the farmers' fields.


Asunto(s)
Bacillus , Prunus armeniaca , Óxido de Zinc , Óxido de Zinc/farmacología , Frutas , Carotenoides
3.
Inflamm Bowel Dis ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427714

RESUMEN

BACKGROUND: Patients with inflammatory bowel disease (IBD) are at increased risk of infection. The aim of this study was to assess the cumulative incidence and risk of infection in patients with IBD treated with interleukin (IL)-targeting agents. METHODS: We searched PubMed, EMBASE, and Web of Science for randomized controlled trials including patients with IBD receiving IL-targeting agents compared with patients receiving placebo or treatment that only differed from the intervention arm in the absence of an IL-targeting agent. The primary outcome of interest was the relative risk (RR) of any-grade and severe infection during the induction phase. RESULTS: There was no difference in risk of any-grade (RR, 0.98; 95% confidence interval [CI], 0.89-1.09) or severe (RR, 0.64; 95% CI, 0.38-1.10) infection in patients receiving any IL-targeting agent compared with the control group. During the maintenance period, the cumulative incidence of any-grade infection in patients receiving IL-12/23p40-targeting agents (mean follow-up 29 weeks) was 34.82% (95% CI, 26.78%-43.32%), while the cumulative incidence of severe infection was 3.07% (95% CI, 0.93%-6.21%). The cumulative incidence of any-grade infection in patients receiving IL-23p19-targeting agents (mean follow-up 40.9 weeks) was 32.16% (95% CI, 20.63%-44.88%), while the cumulative incidence of severe infection was 1.75% (95% CI, 0.60%-3.36%). During the maintenance phase of the included studies, the incidence of infection was 30.66% (95% CI, 22.12%-39.90%) for any-grade and 1.59% (95% CI, 0.76%-2.63%) for severe infection in patients in the control group. CONCLUSIONS: There was no difference in risk of infection between patients with IBD who received IL-targeting agents compared with the control group. Case registries and randomized controlled trials reporting the safety of IL inhibitors should provide detailed information about the risk of specific infectious complications in patients with IBD receiving IL-targeting agents.


Patients with inflammatory bowel disease treated with interleukin-targeting agents are not more likely to develop any-grade or severe infection compared with patients with inflammatory bowel disease receiving placebo or treatment that only differs in the absence of an interleukin-targeting agent.

4.
Brain Spine ; 4: 102744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510612
5.
J Pak Med Assoc ; 73(8): 1775, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37697797
6.
Microsc Res Tech ; 86(7): 834-845, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37249030

RESUMEN

Pyrus communis is a common fruit of temperate region, its domestication and origin is at two different points, Asia and China. Pear fruits bearing brown spot symptoms were picked, and pathogen was isolated and poured on Potato Dextrose Agar (PDA) media. On basis of molecular and molecular analyses, this isolated pathogen was identified as Alternaria alternata. Zinc oxide nanoparticles (ZnO NPs) were prepared from Theveti peruviana leaf extract and were characterized through various techniques Fourier Transform Infrared Spectroscopy (FTIR) analysis of prepared ZnO NPs depicted the presence of agents responsible for stabilization and reduction such as alkenes, alkynes, nitro compounds, alkyl halides, aromatic compounds and aliphatic amines. X-ray diffraction (XRD) analysis confirmed the size (27 nm) and crystalline nature of ZnO NPs. Scanning electron microscopy (SEM) depicted the irregular shape of the prepared ZnO NPs. Mass percentage of zinc (79.84%) and oxygen (20.16%) was depicted using Energy Dispersive X-Ray (EDX) analysis. The in vitro and in vivo antifungal activity (A.F) of prepared NPs against A. alternata was confirmed by poisoned food technique and wound inoculation method. On the basis of which it was concluded that 1.0 mg/mL concentration of ZnO NPs could effectively inhibit A. alteranata growth and minimize the risk of brown spot of pear. SEM images of A. alternata under 1 mg/mL NPs showed the deformation in morphology of A. alternata. ZnO NPs also aided in the preservation of its various organoleptic and biochemical properties. The high percentage of soluble solids, firmness, ascorbic acid and sugars demonstrated its high quality. It has been concluded that 1 mg/mL ZnO NPs can effectively control brown spot of pear while maintaining its quality. In addition, the method might be applied to control emerging diseases in an ecofriendly way to meet the global food demand. RESEARCH HIGHLIGHTS: Isolation and characterization of pathogen causing brown spot in pear. Pathogenicity of A. alternata was checked on healthy fruits. Thevetia peruviana leaf extract was used for the synthesis, characterization and antifungal assay of ZnO Nanoparticles. Green synthesized nanoparticles can be economically effective alternative fungicide for the large scale in agriculture fields.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Pyrus , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antifúngicos/farmacología , Antifúngicos/química , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Difracción de Rayos X , Nanopartículas/química , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier
8.
PLoS One ; 16(12): e0261111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34910751

RESUMEN

Stenotrophomonas maltophilia is a multidrug resistant pathogen associated with high mortality and morbidity in patients having compromised immunity. The efflux systems of S. maltophilia include SmeABC and SmeDEF proteins, which assist in acquisition of multiple-drug-resistance. In this study, proteome based mapping was utilized to find out the potential drug targets for S. maltophilia strain k279a. Various tools of computational biology were applied to remove the human-specific homologous and pathogen-specific paralogous sequences from the bacterial proteome. The CD-HIT analysis selected 4315 proteins from total proteome count of 4365 proteins. Geptop identified 407 essential proteins, while the BlastP revealed approximately 85 non-homologous proteins in the human genome. Moreover, metabolic pathway and subcellular location analysis were performed for essential bacterial genes, to describe their role in various cellular processes. Only two essential proteins (Acyl-[acyl-carrier-protein]-UDP-N acetyl glucosamine O-acyltransferase and D-alanine-D-alanine ligase) as candidate for potent targets were found in proteome of the pathogen, in order to design new drugs. An online tool, Swiss model was employed to model the 3D structures of both target proteins. A library of 5000 phytochemicals was docked against those proteins through the molecular operating environment (MOE). That resulted in to eight inhibitors for both proteins i.e. enterodiol, aloin, ononin and rhinacanthinF for the Acyl-[acyl-carrier-protein]-UDP-N acetyl glucosamine O-acyltransferase, and rhazin, alkannin beta, aloesin and ancistrocladine for the D-alanine-D-alanine ligase. Finally the ADMET was done through ADMETsar. This study supported the development of natural as well as cost-effective drugs against S. maltophilia. These inhibitors displayed the effective binding interactions and safe drug profiles. However, further in vivo and in vitro validation experiment might be performed to check their drug effectiveness, biocompatibility and their role as effective inhibitors.


Asunto(s)
Antibacterianos/farmacología , Sistemas de Liberación de Medicamentos , Simulación del Acoplamiento Molecular , Stenotrophomonas maltophilia/efectos de los fármacos , Técnicas de Hibridación Sustractiva , Proteínas Bacterianas/análisis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Modelos Moleculares , Conformación Proteica , Proteoma
9.
Comput Biol Med ; 133: 104410, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894501

RESUMEN

Medical image segmentation is a complex yet one of the most essential tasks for diagnostic procedures such as brain tumor detection. Several 3D Convolutional Neural Network (CNN) architectures have achieved remarkable results in brain tumor segmentation. However, due to the black-box nature of CNNs, the integration of such models to make decisions about diagnosis and treatment is high-risk in the domain of healthcare. It is difficult to explain the rationale behind the model's predictions due to the lack of interpretability. Hence, the successful deployment of deep learning models in the medical domain requires accurate as well as transparent predictions. In this paper, we generate 3D visual explanations to analyze the 3D brain tumor segmentation model by extending a post-hoc interpretability technique. We explore the advantages of a gradient-free interpretability approach over gradient-based approaches. Moreover, we interpret the behavior of the segmentation model with respect to the input Magnetic Resonance Imaging (MRI) images and investigate the prediction strategy of the model. We also evaluate the interpretability methodology quantitatively for medical image segmentation tasks. To deduce that our visual explanations do not represent false information, we validate the extended methodology quantitatively. We learn that the information captured by the model is coherent with the domain knowledge of human experts, making it more trustworthy. We use the BraTS-2018 dataset to train the 3D brain tumor segmentation network and perform interpretability experiments to generate visual explanations.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación
10.
C R Biol ; 342(3-4): 101-107, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30905576

RESUMEN

Two arsenic-resistant purple non-sulphur bacteria (PNSB), Q3B and Q3C, were isolated (from industrial contaminated site and paddy fields) and identified by SSU rRNA gene sequencing as Rhodospirillum and Rhodospirillaceae species, respectively. Maximum arsenic reduction by these PNSB was observed in anaerobic conditions. Rhodospirillum sp. Q3B showed 74.92% (v/v) arsenic reduction while Rhodospirillaceae sp. Q3C reduced arsenic up to 76.67% (v/v) in anaerobic conditions. Rhodospirillaceae sp. Q3C was found to contain highest carotenoid content up to 5.6mg·g-1. Under anaerobic conditions, the isolates were able to respire arsenic in the presence of lactate, citrate, and oxalate. Rhodospirillum sp. Q3B and Rhodospirillaceae sp. Q3C were also found to produce hydrogen gas. Such diverse bacteria can be useful tools for bioremediation purposes. These bacteria can be further exploited and optimized to treat wastewater containing arsenic along with bio-hydrogen production.


Asunto(s)
Arsénico/metabolismo , Biodegradación Ambiental , Rhodospirillaceae/metabolismo , Bacterias/patogenicidad , Aguas Residuales/química
11.
EXCLI J ; 17: 169-180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29743855

RESUMEN

This study reports three novel sulfonamide derivatives 4-Chloro-N-[(4-methylphenyl) sulphonyl]-N-propyl benzamide (1A), N-(2-hydroxyphenyl)-4-methyl benzene sulfonamide (1B) and 4-methyl-N-(2-nitrophenyl) benzene sulfonamide (1C). The compounds were synthesised from starting material 4-methylbenzenesulfonyl chloride and their structure was studied through 1H-NMR and 13C-NMR spectra. Computational docking was performed to estimate their binding energy against bacterial p-amino benzoic acid (PABA) receptor, the dihydropteroate synthase (DHPS). The derivatives were tested in vitro for their antimicrobial activity against Gram+ and Gram- bacteria including E. coli, B. subtilis, B. licheniformis and B. linen. 1A was found active only against B. linen; 1B was effective against E. coli, B. subtilis and B. linen whereas 1C showed activity against E. coli, B. licheniformis and B. linen. 1C showed maximum activity with minimum inhibitory concentration (MIC) of 50, 100 and 150 µg/mL against E. coli, B. licheniformis and B. linen respectively. 1C exhibited maximum affinity to DHPS with binding free energy of -8.1 kcal/mol. It enriched in the top 0.5 % of a library of 7663 compounds, ranked in order of their binding affinity against DHPS. 1C was followed by 1B which showed a moderate to low level MIC of 100, 250 and 150 µg/mL against E. coli, B. subtilis and B. linen respectively, whereas 1A showed a moderate level MIC of 100 µg/mL but only against B. linen. These derivatives may thus serve as potential anti-bacterial alternatives against resistant pathogens.

12.
Cureus ; 10(2): e2163, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29644152

RESUMEN

New milestones have been reached in oncology with the advent of a noninvasive, photodynamic therapy which aims to eradicate cancer cells rapidly. A chemical compound, Nitrobenzaldehyde, injected into the tumor, activates by ultraviolet (UV) light and disrupts the cancer cells' internal and external dynamics. This technique could be of enormous therapeutic value in destroying numerous cancer lines including breast, prostate, pancreatic cancers, etc., without causing unwanted systemic side effects.

13.
J Clin Diagn Res ; 11(7): OC34-OC39, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28892959

RESUMEN

INTRODUCTION: Coronary Artery Disease (CAD) is a leading cause of morbidity and mortality worldwide, manifesting in a variety of clinical spectrums such as an asymptomatic disease or acute coronary syndrome. It has become highly prevalent in Southeast Asia, including Pakistan. There has been little work done on the prevalence of traditional risk factors in different age groups and genders and there is a dire need to gauge the importance of baseline indices in CAD patients. AIM: To determine the prevalence of conventional risk factors and evaluate the variations in lipid profiles, electrolyte levels and haematological indices among patients with CAD in different age groups and gender. MATERIALS AND METHODS: This cross-sectional study was carried out in a Tertiary Care Hospital in Karachi, Sindh, Pakistan from January to June 2016, among patients with CAD. We recorded the presence of conventional risk factors and baseline indices within the first 24 hours of admission. Continuous variables were compared using Independent t-test or Mann-Whitney test and categorical variables were compared using chi-square or Fisher's exact test. RESULTS: The most frequent risk factor was dyslipidemia (91.2%), followed by hypertension (70.4%), diabetes (51.2%), family history of CAD (40.0%) and smoking (29.2%). Total of 98.4% of patients had at least one risk factor. Diabetes and hypertension were found to be common in females; whereas, smoking was predominantly present in males. Diabetes and dyslipidemia were mostly encountered in elderly patients. The most frequent lipid alteration was low levels of High Density Lipoprotein (HDL). Cholesterol and HDL levels were found to be higher in females than males. Elderly patients had lower levels of HDL and higher levels of Cholesterol. The levels of haematological indices were found to be higher in males and younger patients. The median levels of serum sodium and potassium were found to be higher in elderly patients. CONCLUSION: Our study findings corroborate with the findings from previous studies regarding the significance of risk factors in causing cardiovascular pathology. Medical interventions and dietary control to improve body's lipid status would be indispensable in the prevention of CAD. Deranged electrolyte levels necessitate correction of body electrolyte parameters as an adjunct in prevention strategies.

14.
Pulm Circ ; 7(3): 643-653, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28447910

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive and debilitating condition. Despite promoting vasodilation, current drugs have a therapeutic window within which they are limited by systemic side effects. Nanomedicine uses nanoparticles to improve drug delivery and/or reduce side effects. We hypothesize that this approach could be used to deliver PAH drugs avoiding the systemic circulation. Here we report the use of iron metal organic framework (MOF) MIL-89 and PEGylated MIL-89 (MIL-89 PEG) as suitable carriers for PAH drugs. We assessed their effects on viability and inflammatory responses in a wide range of lung cells including endothelial cells grown from blood of donors with/without PAH. Both MOFs conformed to the predicted structures with MIL-89 PEG being more stable at room temperature. At concentrations up to 10 or 30 µg/mL, toxicity was only seen in pulmonary artery smooth muscle cells where both MOFs reduced cell viability and CXCL8 release. In endothelial cells from both control donors and PAH patients, both preparations inhibited the release of CXCL8 and endothelin-1 and in macrophages inhibited inducible nitric oxide synthase activity. Finally, MIL-89 was well-tolerated and accumulated in the rat lungs when given in vivo. Thus, the prototypes MIL-89 and MIL-89 PEG with core capacity suitable to accommodate PAH drugs are relatively non-toxic and may have the added advantage of being anti-inflammatory and reducing the release of endothelin-1. These data are consistent with the idea that these materials may not only be useful as drug carriers in PAH but also offer some therapeutic benefit in their own right.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA