Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancers (Basel) ; 15(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37190140

RESUMEN

CDK 4/6 inhibitors have demonstrated significant improved survival for patients with estrogen receptor (ER) positive breast cancer (BC). However, the ability of these promising agents to inhibit bone metastasis from either ER+ve or triple negative BC (TNBC) remains to be established. We therefore investigated the effects of the CDK 4/6 inhibitor, palbociclib, using in vivo models of breast cancer bone metastasis. In an ER+ve T47D model of spontaneous breast cancer metastasis from the mammary fat pad to bone, primary tumour growth and the number of hind limb skeletal tumours were significantly lower in palbociclib treated animals compared to vehicle controls. In the TNBC MDA-MB-231 model of metastatic outgrowth in bone (intracardiac route), continuous palbociclib treatment significantly inhibited tumour growth in bone compared to vehicle. When a 7-day break was introduced after 28 days (mimicking the clinical schedule), tumour growth resumed and was not inhibited by a second cycle of palbociclib, either alone or when combined with the bone-targeted agent, zoledronic acid (Zol), or a CDK7 inhibitor. Downstream phosphoprotein analysis of the MAPK pathway identified a number of phosphoproteins, such as p38, that may contribute to drug-insensitive tumour growth. These data encourage further investigation of targeting alternative pathways in CDK 4/6-insensitive tumour growth.

2.
MedComm (2020) ; 2(4): 514-530, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34977868

RESUMEN

Triple negative breast cancer (TNBC) cells lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). Thus, TNBC does not respond to hormone-based therapy. TNBC is also an aggressive subtype associated with poorer prognoses compared to other breast cancers. Conventional chemotherapeutics are used to manage TNBC although systemic relapse is common with limited benefits being reported as well as adverse events being documented. Here, we discuss current therapies for TNBC in the neo- and adjuvant settings, as well as recent advancements in the targeting of PD-L1-positive tumors and inclusion of PARP inhibitors for TNBC patients with BRCA mutations. The recent development of cyclin-dependent kinase (CDK) 4/6 inhibitors in ER-positive breast cancers has demonstrated significant improvements in progression free survival in patients. Here, we review preclinical data of CDK 4/6 inhibitors and describe current clinical trials assessing these in TNBC disease.

3.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33108352

RESUMEN

Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Eliminación de Gen , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Noqueados , Células Madre Neoplásicas/patología , Proteínas Supresoras de Tumor/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
4.
Acta Oncol ; 59(2): 219-232, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31671026

RESUMEN

Background: Breast cancer (BC) is one of the leading causes of cancer-related deaths worldwide. Standard therapies aim to disrupt pathways that regulate the growth and survival of BC cells. Therapeutic agents such as endocrine therapy target hormone dependent cancer cells and have shown to be suitable approaches in BC treatment. However, in the case of metastatic BC, curative options are limited, thus strategies have been explored to improve survival and clinical benefit. In this review we provide an up to date overview of the development of anti-cancer agents, particularly the newly developed CDK4/6 inhibitors.Material and methods: A search of PubMed was conducted to identify preclinical data surrounding the development of endocrine therapy and CDK4/6 inhibitors in early and metastatic BC. Clinical data were also sought using PubMed and clinicaltrials.gov.Results: Agents targeting oestrogen and its receptor have demonstrated positive outcomes in clinical trial with improvements in objective responses and overall survival. However, patients do exhibit adverse effects and some will eventually fail to respond to endocrine therapy. Subsequently, the development and success of 3rd generation CDK4/6 inhibitors in preclinical studies has allowed their introduction in clinical studies. In patients with ER + BC, CDK4/6 have demonstrated dramatic improvements in progression free survival when used in combination with endocrine therapies. Similar findings were also observed in metastatic disease. Adverse effects were limited in CDK4/6 treated patients, demonstrating the safety of these agents.Conclusion: CDK4/6 inhibitors are highly specific making them a safe and viable therapeutic for BC and there is increasing evidence of their potential to improve survival, even in the metastatic setting. Although a number of trials have demonstrated this, as a lone therapy or in combination, optimisation of treatment scheduling are still required in further clinical investigations.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/efectos adversos , Antineoplásicos Hormonales/efectos adversos , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Femenino , Humanos , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/efectos adversos , Receptores de Estrógenos/metabolismo
5.
Stem Cell Reports ; 13(2): 291-306, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31378673

RESUMEN

Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.


Asunto(s)
Factor de Transcripción GATA2/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Apoptosis , Autorrenovación de las Células , Modelos Animales de Enfermedad , Factor de Transcripción GATA2/antagonistas & inhibidores , Factor de Transcripción GATA2/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
6.
Methods Mol Biol ; 1899: 15-23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30649762

RESUMEN

Bone marrow resident hematopoietic stem cells (HSCs) are responsible for the lifetime generation of the wide profusion of blood and immune cell types found in the body. In addition, therapeutically, in the context of bone marrow transplantation, HSCs have been successfully deployed to restore normal blood-forming capacity in patients being treated with high-dose chemotherapy for hematologic malignancies. The known ability of bone marrow transplantation to either restore or reset the immune system and to engender immune tolerance has suggested that HSCs may be applied therapeutically for a wider range of clinical conditions, including immunological/autoimmune disorders and allogeneic organ transplantation. Herein, we describe a flow-cytometry-based method to isolate mouse HSCs for continued experimental investigation into such therapeutic uses.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/citología , Animales , Trasplante de Médula Ósea , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA