RESUMEN
INTRODUCTION: Eosinophil-derived neurotoxin (EDN) is a biomarker for eosinophilic activation. Urinary (u) EDN may allow non-invasive monitoring of asthma, but clinical recommendations are lacking. We assessed the potential of uEDN as a marker of disease activity in pediatric asthma. METHODS: We assessed urine samples of 371 children from the German ALLIANCE study cohort, from which we had: 169 preschool wheezers (<6 years), 80 asthmatics (≥6 years), and 122 healthy controls using the ImmunoCAP™ EDN Assay. Creatinine (Cr)-adjusted uEDN values were analyzed using correlations, association tests, (non) parametric statistics, multiple linear, and multivariable regression. RESULTS: uEDN/uCr values were higher in atopic versus non-atopic preschool-aged subjects (p = .035) and associated with the sum of allergen-specific IgE in younger (r = 0.24, p = .003), and older subjects (r = 0.23, p = .043). uEDN/uCr was marginally a good determinant for atopy (p = .078, for subjects aged <6 years, and p = .058 for subjects ≥6 years). Children with the T2-high phenotype had higher uEDN/uCr (p < .001) versus T2-low-irrespective of using uEDN/uCr or blood eosinophils in combination to allergen sIgE for disease phenotyping. uEDN/uCr significantly correlated with reduced lung function among asthmatics (FEV1 z-scores: r = -0.30, p = .007, and FEV1/FVC z-scores: r = -0.24, p = .038). Using multivariable modeling, uEDN/uCr was an independent determinant of FEV1 (p = .038), and to a lesser extent, FEV1/FVC (p = .080). CONCLUSIONS: uEDN/uCr may serve as a non-invasive biomarker for clinical features such as lung function in pediatric asthma. We highlight the utility of uEDN/uCr as a biomarker that can be easily assessed using widely available robust diagnostic immunoassays.
Asunto(s)
Asma , Biomarcadores , Neurotoxina Derivada del Eosinófilo , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Asma/orina , Biomarcadores/orina , Neurotoxina Derivada del Eosinófilo/orina , Eosinófilos/inmunología , Inmunoglobulina E/sangre , Pulmón/patología , Pruebas de Función RespiratoriaRESUMEN
Activating point mutations of the RAS gene act as driver mutations for a subset of precursor-B cell acute lymphoblastic leukaemias (pre-B ALL) and represent an ambitious target for therapeutic approaches. The X box-binding protein 1 (XBP1), a key regulator of the unfolded protein response (UPR), is critical for pre-B ALL cell survival, and high expression of XBP1 confers poor prognosis in ALL patients. However, the mechanism of XBP1 activation has not yet been elucidated in RAS mutated pre-B ALL. Here, we demonstrate that XBP1 acts as a downstream linchpin of the IL-7 receptor signalling pathway and that pharmacological inhibition or genetic ablation of XBP1 selectively abrogates IL-7 receptor signalling via inhibition of its downstream effectors, JAK1 and STAT5. We show that XBP1 supports malignant cell growth of pre-B NRASG12D ALL cells and that genetic loss of XBP1 consequently leads to cell cycle arrest and apoptosis. Our findings reveal that active XBP1 prevents the cytotoxic effects of a dual PI3K/mTOR pathway inhibitor (BEZ235) in pre-B NRASG12D ALL cells. This implies targeting XBP1 in combination with BEZ235 as a promising new targeted strategy against the oncogenic RAS in NRASG12D -mutated pre-B ALL.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Genes ras , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transducción de Señal , Respuesta de Proteína Desplegada/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética , Proteína 1 de Unión a la X-Box/genéticaRESUMEN
Phytohormones are supposed to contribute to the establishment of mutualistic Arbuscular mycorrhiza (AM) symbioses. However, their role in the acclimation of micropropagated plantlet inoculated with AM is still unknown. To address this question, we performed a hormone profiling during the acclimation of Satureja khuzistanica plantlets inoculated with Rhizoglomus fasciculatum. The levels of indoleacetic acid (IAA), methyl indole acetic acid, cis-zeatin, cis zeatin ribose, jasmonate, jasmonoyl isoleucine, salicylic acid, abscisic acid (ABA) were analyzed. Further, the relative gene expression of AOS (Allene oxide synthase) as a key enzyme of jasmonate biosynthesis, in either inoculated or non-inoculated micropropagated plantlets was evaluated during acclimation period. The concentrations of IAA and cis-zeatin increased in the plantlets inoculated by AM whereas the concentration of ABA decreased upon 60 days acclimation in the whole shoot of plantlets of S. khuzistanica. The relative expression of AOS gene resulted in an increase of isoleucine jasmonate, the bioactive form of jasmonate. Based on our results, IAA and cis-zeatin probably contribute to maintaining growth, and AM reduces transition stress by modifying ABA and jasmonate concentrations.
Asunto(s)
Micorrizas , Satureja , Micorrizas/metabolismo , Satureja/metabolismo , Zeatina/metabolismo , Isoleucina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Hormonas/metabolismoRESUMEN
Acute lymphoblastic leukemia (ALL) is a disease of lymphoid progenitor cells with an often aggressive course and is commonly caused by the BCR-ABL fusion gene t(9;22) in adults. This fusion gene encodes a constitutively active tyrosine kinase that can be effectively inhibited by tyrosine kinase inhibitors (TKIs), with imatinib being the paradigmatic agent of this class. However, BCR-ABL+ ALL cells rapidly develop mutations against many of the available TKIs, and consecutive disease relapse still results in an overall unfavorable prognosis for patients with this disease. To date, allogeneic stem cell transplantation is the only known curative therapeutic option for the mostly elderly patients with BCR-ABL+ ALL. The discrepancy between the limited therapeutic armamentarium and the growing therapeutic need in an aging population is therefore a reason to test drug combinations against BCR-ABL+ ALL. In this study, we demonstrate that the combination of TKIs with proteasome inhibitors efficiently and under certain conditions synergistically exerts cytotoxic effects in BCR-ABL+ ALL cells in vitro with respect to the induction of apoptosis. Both sole and combined treatment of BCR-ABL+ ALL with the proteasome inhibitors bortezomib and ixazomib, respectively, and TKI causes a significantly greater reduction in cell viability than TKI treatment alone in both BCR-ABL+ cell lines TOM-1 and BV-173. In BV-173 cells, we observed a significant reduction in cell viability to only 1.26%±0.46% with bortezomib treatment and 1.57±0.7% with combination treatment, whereas cells treated with dasatinib alone still had a viable percentage of 40.58±2.6%. Similar results were obtained when ixazomib was applied to both cell lines, and apoptosis was induced in both cases (93.36%±2.7% apoptotic BV-173 cells when treated with ixazomib and TKI). The combination of TKI and proteasome inhibitor is efficient in vitro, potentially expanding the spectrum of therapeutic options for patients with BCR-ABL+ ALL.
Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Anciano , Compuestos de Boro , Bortezomib/farmacología , Bortezomib/uso terapéutico , Dasatinib/farmacología , Dasatinib/uso terapéutico , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/metabolismo , Glicina/análogos & derivados , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
The increased population in megacities has recently exacerbated the need to combat air pollution. This study examined the concept that the sensitivity and tolerance of urban plant species to air pollution might be used to determine Tehran, Iran's air quality and obtain suitable urban greening. The air pollution tolerance index (APTI) was derived using the total chlorophyll, relative water content, pH, and ascorbic acid content of leaf extract from Morus alba, Ailanthus altissima, and Salix babylonica trees as an indicator of the sensitivity and tolerance of urban plant species. A. altissima and S. babylonica, with APTI values of 11.15 and 11.08, respectively, were sensitive to air pollution and can be employed as bioindicators, whereas M. alba, with an APTI value of 14.08, exhibited moderate resistance to air pollution and is therefore recommended for urban planting. Furthermore, the content of enzymatic and non-enzymatic parameters (carotenoid, phenol, and flavonoids) and proline concentration in the polluted seasons and sites (3 and 4) have been increased in M. alba. Collectively, we expect our findings to contribute to the rapidly growing body of research aiming to find a suitable urban greening for a wide range of polluted megacities.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Irán , Plantas , ÁrbolesRESUMEN
BACKGROUND: The therapeutic armamentarium in multiple myeloma has been significantly broadened by proteasome inhibitors, highly efficient means in controlling of multiple myeloma. Despite the developments of therapeutic regimen in treatment of multiple myeloma, still the complete remission requires a novel therapeutic strategy with significant difference in outcomes. Proteasome inhibitors induce autophagy and ER stress, both pivotal pathways for protein homeostasis. Recent studies showed that the IRE1α-XBP1 axis of the unfolded protein response (UPR) is up-regulated in multiple myeloma patients. In addition, XBP1 is crucial for the maintenance of viability of acute lymphoblastic leukemia (ALL). RESULTS: We analyzed the efficacy of targeting IRE1α-XBP1 axis and autophagy in combination with proteasome inhibitor, ixazomib in treatment of multiple myeloma. In this present study, we first show that targeting the IRE1α-XBP1 axis with small molecule inhibitors (STF-083010, A106) together with the ixazomib induces cell cycle arrest with an additive cytotoxic effect in multiple myeloma. Further, we examined the efficacy of autophagy inhibitors (bafilomycin A, BAF and chloroquine, CQ) together with ixazomib in multiple myeloma and observed that this combination treatment synergistically reduced cell viability in multiple myeloma cell lines (viable cells Ixa: 51.8 ± 3.3, Ixa + BAF: 18.3 ± 7.2, Ixa + CQ: 38.4 ± 3.7) and patient-derived multiple myeloma cells (Ixa: 59.6 ± 4.4, Ixa + CQ: 7.0 ± 2.1). We observed, however, that this combined strategy leads to activation of stress-induced c-Jun N-terminal kinase (JNK). Cytotoxicity mediated by combined proteasome and autophagy inhibition was reversed by addition of the specific JNK inhibitor JNK-In-8 (viable cells: Ixa + BAF: 11.6 ± 7.0, Ixa + BAF + JNK-In-8: 30.9 ± 6.1). CONCLUSION: In this study we showed that combined inhibition of autophagy and the proteasome synergistically induces cell death in multiple myeloma. Hence, we consider the implication of pharmaceutical inhibition of autophagy together with proteasome inhibition and UPR-directed therapy as promising novel in vitro treatment strategy against multiple myeloma.
Asunto(s)
Mieloma Múltiple , Inhibidores de Proteasoma , Apoptosis , Autofagia , Benzamidas , Línea Celular Tumoral , Endorribonucleasas , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Proteínas Serina-Treonina Quinasas , Piridinas , PirimidinasRESUMEN
Sugar beet is vulnerable to rhizomania as the most destructive viral disease. Two selected events of transgenic sugar beet carrying cassettes inducing RNA silencing mechanism, 219-T3:S3-13.2 (S3) and 6018-T3:S6-44 (S6), were shown to inhibit propagation of Beet Necrotic Yellow Vein Virus, the causative agent. As a method for signifying the substantial equivalence, we analyzed the levels of some metabolites through LC-MS in order to demonstrate possible unintended changes in the leaves of the transgenic events. There was no significant difference in the concentrations of examined key metabolites but cis-aconitate and fructose-1,6-bisphosphatase which were decreased in S3. Also, ATP was reduced in both genetically modified sugar beets. Among free amino acids, only glycine level in S6 was increased compared to the wild plant, while the production levels of 5 and 12 ones were increased in S3 compared to S6 event and the wild type plants, respectively.
RESUMEN
Rhizomania is an economically important disease of sugar beet, which is caused by Beet necrotic yellow vein virus (BNYVV). As previously shown, RNA silencing mechanism effectively inhibit the viral propagation in transgenic sugar beet plants. To investigate possible proteomic changes induced by gene insertion and/or RNA silencing mechanism, the root protein profiles of wild type sugar beet genotype 9597, as a control, and transgenic events named 6018-T3:S6-44 (S6) and 219-T3:S3-13.2 (S3) were compared by two-dimensional gel electrophoresis. The accumulation levels of 25 and 24 proteins were differentially regulated in S3 and S6 plants, respectively. The accumulation of 15 spots were increased or decreased more than 2-fold. Additionally, 10 spots repressed or induced in both, while seven spots showed variable results in two events. All the differentially expressed spots were analyzed by MALDI-TOF-TOF mass spectrometry. The functional analysis of differentially accumulated proteins showed that most of them are related to the metabolism and defense/stress response. None of these recognized proteins were allergens or toxic proteins except for a spot identified as phenylcoumaran benzylic ether reductase, Pyrc5, which was decreased in the genetically modified S6 plant. These data are in favor of substantial equivalence of the transgenic plants in comparison to their related wild type cultivar since the proteomic profile of sugar beet root was not remarkably affected by gene transfer and activation RNA silencing mechanism.
Asunto(s)
Beta vulgaris , Beta vulgaris/genética , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Proteoma , Proteómica , Interferencia de ARN , AzúcaresRESUMEN
BCR-ABL1-positive acute lymphoblastic leukemia (ALL) cell survival is dependent on the inositol-requiring enzyme 1 alpha (IRE1α) branch of the unfolded protein response. In the current study, we have focused on exploring the efficacy of a simultaneous pharmacological inhibition of BCR-ABL1 and IRE1α in Philadelphia-positive (Ph+) ALL using tyrosine kinase inhibitor (TKI) nilotinib and the IRE1α inhibitor MKC-8866. The combination of 0.5 µM nilotinib and 30 µM MKC-8866 in Ph+ ALL cell lines led to a synergistic effect on cell viability. To mimic this dual inhibition on a genetic level, pre-B-cells from conditional Xbp1+/fl mice were transduced with a BCR-ABL1 construct and with either tamoxifen-inducible cre or empty vector. Cells showed a significant sensitization to the effect of TKIs after the induction of the heterozygous deletion. Finally, we performed a phosphoproteomic analysis on Ph+ ALL cell lines treated with the combination of nilotinib and MKC-8866 to identify potential targets involved in their synergistic effect. An enhanced activation of p38 mitogen-activated protein kinase α (p38α MAPK) was identified. In line with this findings, p38 MAPK and, another important endoplasmic reticulum-stress-related kinase, c-Jun N-terminal kinase (JNK) were found to mediate the potentiated cytotoxic effect induced by the combination of MKC-8866 and nilotinib since the targeting of p38 MAPK with its specific inhibitor BIRB-796 or JNK with JNK-in-8 hindered the synergistic effect observed upon treatment with nilotinib and MKC-8866. In conclusion, the identified combined action of nilotinib and MKC-8866 might represent a successful therapeutic strategy in high-risk Ph+ ALL.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Endorribonucleasas/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Mutaciones Letales Sintéticas/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Benzamidas/farmacología , Benzopiranos/farmacología , Benzopiranos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Proteínas de Fusión bcr-abl/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones Transgénicos , Morfolinas/farmacología , Morfolinas/uso terapéutico , Naftalenos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Cultivo Primario de Células , Pirazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Proteína 1 de Unión a la X-Box/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
In the current study, soils of Tang-e Douzan mine, located in Isfahan, Iran, were collected and analyzed for soluble, exchangeable, and total amounts of Pb, Zn, Cd, Ca, and Mg. The maximum Pb, Zn, Cd, Ca, and Mg concentrations in soils were 2500, 1100, 59, 43,800, and 1320 mg/kg for total metals, 86, 83, 6.3, 4650, and 48 mg/kg for their exchangeable fractions, and 59, 3.7, 0.53, 430, and 6.4 mg/kg for their soluble fractions, respectively. All specimens collected, including 69 plant species, were analyzed for Pb, Zn, and Cd. Moreover, their phytoremediation potential was investigated by calculating bioconcentration factors (BCF), translocation factors (TF), and extraction factors (EF) for each heavy metal. Analysis of the leaves for heavy metals showed no metal hyperaccumulation. The highest shoot concentrations of Pb (298 mg/kg) and Zn (740 mg/kg) were found in Roemeria hybrida subsp. dodecandra and Cd (43 mg/kg) in Chenopodium foliosum. Plants having BCFs and TFs > 1 are capable of phytoextraction. Among the analyzed species, four had both TFs and BCFs > 1 for Zn, 13 for Cd, and none for Pb. R. hybrida, Bromus squarrosus, Descurainia sophia, and Poa bulbosa seem to be the best choices for phytoextraction of Zn. Aegilops columnaris, Allium ampeloprasum subsp. iranicum, B. squarrosus, and Cousinia piptocephala are the best choices for phytoextraction of Cd. Plants with BCF > 1 and TF < 1, including Cerastium dichotomum and Muscari neglectum for Pb, Ceratocephala falcata, M. neglectum, Ornithogalum orthophyllum, and Ranunculus arvensis for Zn and C. falcata, M. neglectum, O. orthophyllum, and R. hybrida subsp. dodecandra for Cd, are proposed to be the most efficient species for metal phytostabilization.
Asunto(s)
Cadmio/metabolismo , Plomo/metabolismo , Minería , Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Zinc/metabolismo , Biodegradación Ambiental , Cadmio/análisis , Irán , Plomo/análisis , Contaminantes del Suelo/análisis , Zinc/análisisRESUMEN
Basil (Ocimum basilicun L.) belongs to the family Lamiaceae and is an important aromatic and medicinal plant, which it widely cultivated in many countries. This plant is a good source of phenolic com- pounds and natural antioxidants. The main aim of present study was to determine effect of jasmonic acid on total phenolic content and antioxidant activity of ethanolic extract from the aerial parts of the purple and green landraces of basil. The pot experiment was conducted in an experimental field with cold and semiarid climate in southwestern Iran. Treatments comprised control (water), ethanol as solvent, 200 and 400 pLjasmonic acid. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. Results indicated that the different levels of jasmonic acid had significant effects on total phenolics content and antioxidant activity of the extracts. Foliar-applied jasmonic acid in particular 400 µL increased total phenolic content in the plants as compared to untreated plants. In conclusion, it is suggested that jasmonic acid as an abiotic elicitor could be a promising material used to increase biological activity and pro-health functional value of basil plants.
Asunto(s)
Antioxidantes/farmacología , Ciclopentanos/farmacología , Ocimum basilicum/química , Oxilipinas/farmacología , Fenoles/análisis , Extractos Vegetales/farmacología , Ocimum basilicum/efectos de los fármacosRESUMEN
The fruit essential oils of Heracleum persicum, H. rechingeri, H. gorganicum, H. rawianum, H. pastinacifolium, and H. anisactis from Iran were obtained by hydrodistillation and characterized by GC-FID and GC/MS analyses. The oils of the six species were compared to determine the similarities and differences among their compositions. Overall, 36 compounds were identified in the fruit oils, accounting for 92.40-96.74% of the total oil compositions. Aliphatic esters constituted the main fraction of the oils (86.61-94.31%), with octyl acetate and hexyl butyrate as the major components. The oil compositions of species belonging to section Pubescentia (H. persicum, H. gorganicum, and H. rechingeri) were discriminated by equally high contents of both octyl acetate (13.84-20.48%) and hexyl butyrate (17.73-38.36%). On the other hand, the oils of H. rawianum, H. pastinacifolium and H. anisactis, belonging to section Wendia, showed lower hexyl butyrate contents (3.62-6.6%) and higher octyl acetate contents (48.71-75.36%) than the former. Moreover, isoelemicin was identified at low amounts (0.10-2.51%) only in the oils of the latter species. The differences in the oil composition among the six species were investigated by hierarchical cluster and principal component analyses, which indicated that the oil composition confirmed well the taxonomical classification based on the morphological and botanical data, and, thus, may provide a reliable marker to discriminate Heracleum species at the intersectional level.