Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Aging Neurosci ; 16: 1400447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006222

RESUMEN

Introduction: Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods: To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results: Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion: In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.

2.
Biomolecules ; 14(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38254666

RESUMEN

DUSP4 is a member of the DUSP (dual-specificity phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized the stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with the label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified protein expression and phosphorylation patterns modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome. In 5xFAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as activated immune response or suppressed synaptic activities. Many proteins in pathways, such as immune response were found to be suppressed in response to DUSP4 overexpression in male 5xFAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites regulated in 5xFAD compared to WT and modulated via DUSP4 overexpression in each sex. Interestingly, 5xFAD- and DUSP4-associated phosphorylation changes occurred in opposite directions. Strikingly, both the 5xFAD- and DUSP4-associated phosphorylation changes were found to be mostly in neurons and play key roles in neuronal processes and synaptic functions. Site-centric pathway analysis revealed that both the 5xFAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in females but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5xFAD mice responded to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.


Asunto(s)
Enfermedad de Alzheimer , Fosfatasas de Especificidad Dual , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Proteoma , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Dependovirus , Fosfatasas de Especificidad Dual/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Proteómica , Transducción de Señal
3.
Res Sq ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37886598

RESUMEN

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome. In 5xFAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as the activated immune response or suppression of synaptic activities. Upon DUSP4 overexpression, significantly regulated proteins were found in pathways that were suppressed, such as the immune response, in male 5xFAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites that are regulated in 5xFAD compared to WT, and are modulated by DUSP4 overexpression in each sex. Interestingly, the changes in 5xFAD- and DUSP4-associated phosphorylation occurred in opposite directions. Strikingly, both the 5xFAD- and DUSP4-associated phosphorylation changes were found for the most part in neurons, and play key roles in neuronal processes and synaptic function. Site-centric pathway analysis revealed that both the 5xFAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in female, but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5xFAD mice respond to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes, while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.

4.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745468

RESUMEN

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5×FAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5×FAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5×FAD proteome/phosphoproteome. In 5×FAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as the activated immune response or suppression of synaptic activities. Upon DUSP4 overexpression, significantly regulated proteins were found in pathways that were suppressed, such as the immune response, in male 5×FAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites that are regulated in 5×FAD compared to WT, and are modulated by DUSP4 overexpression in each sex. Interestingly, the changes in 5×FAD- and DUSP4-associated phosphorylation occurred in opposite directions. Strikingly, both the 5×FAD- and DUSP4-associated phosphorylation changes were found for the most part in neurons, and play key roles in neuronal processes and synaptic function. Site-centric pathway analysis revealed that both the 5×FAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in female, but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5×FAD mice respond to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes, while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.

5.
bioRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662269

RESUMEN

Background: Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal network that regulates late-onset Alzheimer's disease. Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods: AAV5-DUSP6 or AAV5-GFP (control) were stereotactically injected into the dorsal hippocampus (dHc) of female and male 5xFAD or wild type mice to overexpress DUSP6 or GFP. Spatial learning memory of these mice was assessed in the Barnes maze, after which hippocampal tissues were isolated for downstream analysis. Results: Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß 1-40 and Aß 1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation and microgliosis, which are increased in 5xFAD mice, were significantly reduced by dHc DUSP6 overexpression in both males and females. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulated expression of genes involved in inflammatory and extracellular signal-regulated kinase (ERK) pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. A limited number of differentially expressed genes (DEGs) (FDR<0.05) were identified in male mice; gene ontology analysis of DEGs (p<0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Notably, the msh homeobox 3 gene, Msx3 , previously shown to regulate microglial M1/M2 polarization and reduce neuroinflammation, was one of the most robustly upregulated genes in female and male wild type and 5xFAD mice overexpressing DUSP6. Conclusions: In summary, our data indicate that DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.

6.
Mol Metab ; 76: 101781, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482186

RESUMEN

OBJECTIVE: Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS: We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS: We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS: The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.


Asunto(s)
Metabolismo Energético , Neuropéptidos , Hormonas Peptídicas , Animales , Ratones , Dieta , Homeostasis , Neuropéptidos/genética , Neuropéptidos/química , Fragmentos de Péptidos/farmacología , Metabolismo Energético/genética , Metabolismo Energético/fisiología
7.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993202

RESUMEN

Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Here, we developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R 21 →A). We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by a temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.

9.
Cells ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36497141

RESUMEN

Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Proteínas Tirosina Fosfatasas , Animales , Femenino , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas Tirosina Fosfatasas/genética , Aprendizaje
10.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429060

RESUMEN

The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Humanos , Preparaciones Farmacéuticas , Administración Intranasal , Desarrollo de Medicamentos
11.
Front Mol Neurosci ; 15: 932497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909451

RESUMEN

This article reviews the current progress in our understanding of the mechanisms by which growth factors, including brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), and select neurotrophin-regulated gene products, such as VGF (non-acronymic) and VGF-derived neuropeptides, function in the central nervous system (CNS) to modulate neuropsychiatric and neurodegenerative disorders, with a discussion of the possible therapeutic applications of these growth factors to major depressive disorder (MDD) and Alzheimer's disease (AD). BDNF and VEGF levels are generally decreased regionally in the brains of MDD subjects and in preclinical animal models of depression, changes that are associated with neuronal atrophy and reduced neurogenesis, and are reversed by conventional monoaminergic and novel ketamine-like antidepressants. Downstream of neurotrophins and their receptors, VGF was identified as a nerve growth factor (NGF)- and BDNF-inducible secreted protein and neuropeptide precursor that is produced and trafficked throughout the CNS, where its expression is greatly influenced by neuronal activity and exercise, and where several VGF-derived peptides modulate neuronal activity, function, proliferation, differentiation, and survival. Moreover, levels of VGF are reduced in the CSF of AD subjects, where it has been repetitively identified as a disease biomarker, and in the hippocampi of subjects with MDD, suggesting possible shared mechanisms by which reduced levels of VGF and other proteins that are similarly regulated by neurotrophin signaling pathways contribute to and potentially drive the pathogenesis and progression of co-morbid neuropsychiatric and neurodegenerative disorders, particularly MDD and AD, opening possible therapeutic windows.

12.
Proc Natl Acad Sci U S A ; 119(22): e2201355119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35613048

RESUMEN

Area-specific axonal projections from the mammalian thalamus shape unique cellular organization in target areas in the adult neocortex. How these axons control neurogenesis and early neuronal fate specification is poorly understood. By using mutant mice lacking the majority of thalamocortical axons, we show that these axons are required for the production and specification of the proper number of layer 4 neurons in primary sensory areas by the neonatal stage. Part of these area-specific roles is played by the thalamus-derived molecule, VGF. Our work reveals that extrinsic cues from sensory thalamic projections have an early role in the formation of cortical cytoarchitecture by enhancing the production and specification of layer 4 neurons.


Asunto(s)
Axones , Tipificación del Cuerpo , Corteza Cerebral , Neurogénesis , Tálamo , Animales , Axones/fisiología , Corteza Cerebral/embriología , Corteza Cerebral/ultraestructura , Ratones , Ratones Mutantes , Vías Nerviosas , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/fisiología , Tálamo/embriología , Tálamo/ultraestructura
13.
Cell Mol Life Sci ; 78(23): 7133-7144, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626205

RESUMEN

The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas Mitocondriales/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Complemento/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Fragmentos de Péptidos/genética , Transducción de Señal/fisiología
14.
Transl Psychiatry ; 11(1): 383, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238925

RESUMEN

The release of neuropeptides from dense core vesicles (DCVs) modulates neuronal activity and plays a critical role in cognitive function and emotion. The granin family is considered a master regulator of DCV biogenesis and the release of DCV cargo molecules. The expression of the VGF protein (nonacronymic), a secreted neuropeptide precursor that also belongs to the extended granin family, has been previously shown to be induced in the brain by hippocampus-dependent learning, and its downregulation is mechanistically linked to neurodegenerative diseases such as Alzheimer's disease and other mood disorders. Currently, whether changes in translational efficiency of Vgf and other granin mRNAs may be associated and regulated with learning associated neural activity remains largely unknown. Here, we show that either contextual fear memory training or the administration of TLQP-62, a peptide derived from the C-terminal region of the VGF precursor, acutely increases the translation of VGF and other granin proteins, such as CgB and Scg2, via an mTOR-dependent signaling pathway in the absence of measurable increases in mRNA expression. Luciferase-based reporter assays confirmed that the 3'-untranslated region (3'UTR) of the Vgf mRNA represses VGF translation. Consistently, the truncation of the endogenous Vgf mRNA 3'UTR results in substantial increases in VGF protein expression both in cultured primary neurons and in brain tissues from knock in mice expressing a 3'UTR-truncation mutant encoded by the modified Vgf gene. Importantly, Vgf 3'UTR-truncated mice exhibit enhanced memory performance and reduced anxiety- and depression-like behaviors. Our results therefore reveal a rapid, transcription-independent induction of VGF and other granin proteins after learning that are triggered by the VGF-derived peptide TLQP-62. Our findings suggest that the rapid, positive feedforward increase in the synthesis of granin family proteins might be a general mechanism to replenish DCV cargo molecules that have been released in response to neuronal activation and is crucial for memory function and mood stability.


Asunto(s)
Neuronas , Péptidos , Animales , Cognición , Hipocampo , Memoria , Ratones
15.
Nat Commun ; 11(1): 3942, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770063

RESUMEN

Though discovered over 100 years ago, the molecular foundation of sporadic Alzheimer's disease (AD) remains elusive. To better characterize the complex nature of AD, we constructed multiscale causal networks on a large human AD multi-omics dataset, integrating clinical features of AD, DNA variation, and gene- and protein-expression. These probabilistic causal models enabled detection, prioritization and replication of high-confidence master regulators of AD-associated networks, including the top predicted regulator, VGF. Overexpression of neuropeptide precursor VGF in 5xFAD mice partially rescued beta-amyloid-mediated memory impairment and neuropathology. Molecular validation of network predictions downstream of VGF was also achieved in this AD model, with significant enrichment for homologous genes identified as differentially expressed in 5xFAD brains overexpressing VGF. Our findings support a causal role for VGF in protecting against AD pathogenesis and progression.


Asunto(s)
Enfermedad de Alzheimer/etiología , Encéfalo/patología , Factores de Crecimiento Nervioso/metabolismo , Mapas de Interacción de Proteínas , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Mapeo de Interacción de Proteínas , Proteómica
16.
Mol Neurodegener ; 15(1): 4, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924226

RESUMEN

BACKGROUND: Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) identified VGF as a major driver of Alzheimer's disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. METHODS: We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. RESULTS: We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. CONCLUSIONS: These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.


Asunto(s)
Enfermedad de Alzheimer/patología , Microglía/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Complemento/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología
17.
Ann N Y Acad Sci ; 1455(1): 196-205, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31074515

RESUMEN

Recent studies suggest that bioactive dietary polyphenol preparation (BDPP) and individual polyphenolic compounds ameliorate stress-induced depression-like behaviors, but the underlying molecular mechanisms are incompletely understood. VGF (non-acronymic) in the dorsal hippocampus (dHc) has been shown to play a role in depression-like behaviors and antidepressant efficacy, and the VGF-derived peptide TLQP-62 (named by the N-terminal 4 amino acids and length) infused into dHc has been shown to have antidepressant efficacy that is BDNF-TrkB dependent. Here, we investigated whether BDPP influences VGF expression in the dHc, and whether dHc VGF is required for BDPP antidepressant efficacy. We found that BDPP produced antidepressant-like effects in naive mice and reversed the depression-like behaviors induced by chronic variable stress. In addition, we found that BDPP had no detectable antidepressant efficacy in floxed mice with prior knockdown in the dHc of either VGF or BDNF, achieved by adeno-associated virus-Cre infusion. Our data indicate that dHc VGF and BDNF expression are required for the antidepressant actions of BDPP, and therefore suggest that a VGF(TLQP-62)-BDNF-TrkB autoregulatory feedback loop could play a role in the regulation of BDPP antidepressant efficacy, much as it has been suggested to function in the antidepressant efficacies of ketamine and TLQP-62.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Polifenoles/farmacología , Vitis/fisiología , Animales , Masculino , Ratones
18.
Biol Psychiatry ; 85(3): 226-236, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336931

RESUMEN

BACKGROUND: Homeostatic plasticity in mesolimbic dopamine (DA) neurons plays an essential role in mediating resilience to social stress. Recent evidence implicates an association between stress resilience and projections from the locus coeruleus (LC) to the ventral tegmental area (VTA) (LC→VTA) DA system. However, the precise circuitry and molecular mechanisms of the homeostatic plasticity in mesolimbic DA neurons mediated by the LC→VTA circuitry, and its role in conferring resilience to social defeat stress, have not been described. METHODS: In a well-established chronic social defeat stress model of depression, using projection-specific electrophysiological recordings and optogenetic, pharmacological, and molecular profiling techniques, we investigated the functional role and molecular basis of an LC→VTA circuit in conferring resilience to social defeat stress. RESULTS: We found that LC neurons projecting to the VTA exhibit enhanced firing activity in resilient, but not susceptible, mice. Optogenetically mimicking this firing adaptation in susceptible mice reverses their depression-related behaviors, and induces reversal of cellular hyperactivity and homeostatic plasticity in VTA DA neurons projecting to the nucleus accumbens. Circuit-specific molecular profiling studies reveal that α1- and ß3-adrenergic receptors are highly expressed in VTA→nucleus accumbens DA neurons. Pharmacologically activating these receptors induces similar proresilient effects at the ion channel and cellular and behavioral levels, whereas antagonizing these receptors blocks the proresilient effect of optogenetic activation of LC→VTA circuit neurons in susceptible mice. CONCLUSIONS: These findings reveal a key role of the LC→VTA circuit in mediating homeostatic plasticity in stress resilience and reveal α1- and ß3-adrenergic receptors as new molecular targets for therapeutically promoting resilience.


Asunto(s)
Locus Coeruleus/fisiología , Receptores Adrenérgicos alfa 1/fisiología , Receptores Adrenérgicos beta 3/fisiología , Resiliencia Psicológica , Área Tegmental Ventral/fisiología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Antagonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Conducta Animal/fisiología , Neuronas Dopaminérgicas/fisiología , Homeostasis/fisiología , Locus Coeruleus/efectos de los fármacos , Masculino , Ratones , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Resiliencia Psicológica/efectos de los fármacos , Estrés Psicológico/fisiopatología , Área Tegmental Ventral/efectos de los fármacos
19.
J Mol Neurosci ; 68(3): 504-509, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30022437

RESUMEN

Members of the neurotrophin family and in particular brain-derived neurotrophic factor (BDNF) regulate the response to rapid- and slow-acting chemical antidepressants and voluntary exercise. Recent work suggests that rapid-acting antidepressants that modulate N-methyl-D-aspartate receptor (NMDA-R) signaling (e.g., ketamine and GLYX-13) require expression of VGF (non-acronymic), the BDNF-inducible secreted neuronal protein and peptide precursor, for efficacy. In addition, the VGF-derived C-terminal peptide TLQP-62 (named by its 4 N-terminal amino acids and length) has antidepressant efficacy following icv or intra-hippocampal administration, in the forced swim test (FST). Similar to ketamine, the rapid antidepressant actions of TLQP-62 require BDNF expression, mTOR activation (rapamycin-sensitive), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor activation (NBQX-sensitive) and are associated with GluR1 insertion. We review recent findings that identify a rapidly induced autoregulatory feedback loop, which likely plays a critical role in sustained efficacy of rapid-acting antidepressants, depression-like behavior, and cognition, and requires VGF, its C-terminal peptide TLQP-62, BDNF/TrkB signaling, the mTOR pathway, and AMPA receptor activation and insertion.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Retroalimentación Fisiológica , Neuropéptidos/metabolismo , Péptidos/farmacología , Receptor trkB/metabolismo , Animales , Encéfalo/metabolismo , Humanos
20.
Neuropsychopharmacology ; 44(5): 971-981, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30504797

RESUMEN

Patients with major depressive disorder (MDD) often have structural and functional deficits in the ventromedial prefrontal cortex (vmPFC), but the underlying molecular pathways are incompletely understood. The neuropeptide precursor VGF (non-acronymic) plays a critical role in depression and antidepressant efficacy in hippocampus and nucleus accumbens, however its function in vmPFC has not been investigated. Here, we show that VGF levels were reduced in Brodmann area 25 (a portion of human vmPFC) of MDD patients and in mouse vmPFC following chronic restraint stress (CRS), and were increased by ketamine in mouse vmPFC. VGF overexpression in vmPFC prevented behavioral deficits induced by CRS, and VGF knockdown in vmPFC increased susceptibility to subchronic variable stress (SCVS) and reduced ketamine's antidepressant efficacy. Acute intra-vmPFC TLQP-62 infusion induced behavioral phenotypes that mimic those produced by antidepressant drug treatment. These antidepressant-like effects were sustained for 7 days and were abolished by local Bdnf gene ablation, or pretreatment with xestospongin C, an inhibitor of IP3-mediated Ca2+ release, or SKF96365, an inhibitor of store-operated and TRPC channel-mediated Ca2+ entry. In conclusion, VGF in the vmPFC regulates susceptibility to stress and the antidepressant response to ketamine. TLQP-62 infusion produces sustained antidepressant responses that require BDNF expression and calcium mobilization in vmPFC.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Trastorno Depresivo Mayor/metabolismo , Ketamina/farmacología , Factores de Crecimiento Nervioso/metabolismo , Neuropéptidos/metabolismo , Péptidos/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Animales , Antidepresivos/administración & dosificación , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/etiología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/metabolismo , Femenino , Humanos , Ketamina/administración & dosificación , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Péptidos/administración & dosificación , Estrés Psicológico/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA