Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuro Oncol ; 24(1): 78-87, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34214170

RESUMEN

BACKGROUND: Gliomas comprise the most common type of primary brain tumor, are highly invasive, and often fatal. IDH-mutated gliomas are particularly challenging to image and there is currently no clinically accepted method for identifying the extent of tumor burden in these neoplasms. This uncertainty poses a challenge to clinicians who must balance the need to treat the tumor while sparing healthy brain from iatrogenic damage. The purpose of this study was to investigate the feasibility of using resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to detect glioma-related asynchrony in vascular dynamics for distinguishing tumor from healthy brain. METHODS: Twenty-four stereotactically localized biopsies were obtained during open surgical resection from ten treatment-naïve patients with IDH-mutated gliomas who received standard-of-care preoperative imaging as well as echo-planar resting-state BOLD fMRI. Signal intensity for BOLD asynchrony and standard-of-care imaging was compared to cell counts of total cellularity (H&E), tumor density (IDH1 & Sox2), cellular proliferation (Ki67), and neuronal density (NeuN), for each corresponding sample. RESULTS: BOLD asynchrony was directly related to total cellularity (H&E, P = 4 × 10-5), tumor density (IDH1, P = 4 × 10-5; Sox2, P = 3 × 10-5), cellular proliferation (Ki67, P = .002), and inversely related to neuronal density (NeuN, P = 1 × 10-4). CONCLUSIONS: Asynchrony in vascular dynamics, as measured by resting-state BOLD fMRI, correlates with tumor burden and provides a radiographic delineation of tumor boundaries in IDH-mutated gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagen , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Imagen por Resonancia Magnética , Mutación , Saturación de Oxígeno , Carga Tumoral
2.
Nat Med ; 25(6): 1022, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30996326

RESUMEN

In the version of this article originally published, the graph in Extended Data Fig. 2c was a duplication of Extended Data Fig. 2b. The correct version of Extended Data Fig. 2c is now available online.

3.
Nat Med ; 25(3): 462-469, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742119

RESUMEN

Immune checkpoint inhibitors have been successful across several tumor types; however, their efficacy has been uncommon and unpredictable in glioblastomas (GBM), where <10% of patients show long-term responses. To understand the molecular determinants of immunotherapeutic response in GBM, we longitudinally profiled 66 patients, including 17 long-term responders, during standard therapy and after treatment with PD-1 inhibitors (nivolumab or pembrolizumab). Genomic and transcriptomic analysis revealed a significant enrichment of PTEN mutations associated with immunosuppressive expression signatures in non-responders, and an enrichment of MAPK pathway alterations (PTPN11, BRAF) in responders. Responsive tumors were also associated with branched patterns of evolution from the elimination of neoepitopes as well as with differences in T cell clonal diversity and tumor microenvironment profiles. Our study shows that clinical response to anti-PD-1 immunotherapy in GBM is associated with specific molecular alterations, immune expression signatures, and immune infiltration that reflect the tumor's clonal evolution during treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Nivolumab/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , Anciano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Femenino , Perfilación de la Expresión Génica , Genómica , Glioblastoma/genética , Glioblastoma/inmunología , Humanos , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mutación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/inmunología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/inmunología , Linfocitos T/inmunología , Resultado del Tratamiento , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Adulto Joven
4.
Genome Med ; 10(1): 57, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30041684

RESUMEN

BACKGROUND: Despite extensive molecular characterization, we lack a comprehensive understanding of lineage identity, differentiation, and proliferation in high-grade gliomas (HGGs). METHODS: We sampled the cellular milieu of HGGs by profiling dissociated human surgical specimens with a high-density microwell system for massively parallel single-cell RNA-Seq. We analyzed the resulting profiles to identify subpopulations of both HGG and microenvironmental cells and applied graph-based methods to infer structural features of the malignantly transformed populations. RESULTS: While HGG cells can resemble glia or even immature neurons and form branched lineage structures, mesenchymal transformation results in unstructured populations. Glioma cells in a subset of mesenchymal tumors lose their neural lineage identity, express inflammatory genes, and co-exist with marked myeloid infiltration, reminiscent of molecular interactions between glioma and immune cells established in animal models. Additionally, we discovered a tight coupling between lineage resemblance and proliferation among malignantly transformed cells. Glioma cells that resemble oligodendrocyte progenitors, which proliferate in the brain, are often found in the cell cycle. Conversely, glioma cells that resemble astrocytes, neuroblasts, and oligodendrocytes, which are non-proliferative in the brain, are generally non-cycling in tumors. CONCLUSIONS: These studies reveal a relationship between cellular identity and proliferation in HGG and distinct population structures that reflects the extent of neural and non-neural lineage resemblance among malignantly transformed cells.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Análisis de la Célula Individual , Transcriptoma , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Transformación Celular Neoplásica , Glioma/metabolismo , Glioma/patología , Humanos , Neuroglía/patología , Neuronas/patología
5.
Ann Neurol ; 83(6): 1133-1146, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29679388

RESUMEN

OBJECTIVE: Somatic variants are a recognized cause of epilepsy-associated focal malformations of cortical development (MCD). We hypothesized that somatic variants may underlie a wider range of focal epilepsy, including nonlesional focal epilepsy (NLFE). Through genetic analysis of brain tissue, we evaluated the role of somatic variation in focal epilepsy with and without MCD. METHODS: We identified somatic variants through high-depth exome and ultra-high-depth candidate gene sequencing of DNA from epilepsy surgery specimens and leukocytes from 18 individuals with NLFE and 38 with focal MCD. RESULTS: We observed somatic variants in 5 cases in SLC35A2, a gene associated with glycosylation defects and rare X-linked epileptic encephalopathies. Nonsynonymous variants in SLC35A2 were detected in resected brain, and absent from leukocytes, in 3 of 18 individuals (17%) with NLFE, 1 female and 2 males, with variant allele frequencies (VAFs) in brain-derived DNA of 2 to 14%. Pathologic evaluation revealed focal cortical dysplasia type Ia (FCD1a) in 2 of the 3 NLFE cases. In the MCD cohort, nonsynonymous variants in SCL35A2 were detected in the brains of 2 males with intractable epilepsy, developmental delay, and magnetic resonance imaging suggesting FCD, with VAFs of 19 to 53%; Evidence for FCD was not observed in either brain tissue specimen. INTERPRETATION: We report somatic variants in SLC35A2 as an explanation for a substantial fraction of NLFE, a largely unexplained condition, as well as focal MCD, previously shown to result from somatic mutation but until now only in PI3K-AKT-mTOR pathway genes. Collectively, our findings suggest a larger role than previously recognized for glycosylation defects in the intractable epilepsies. Ann Neurol 2018.


Asunto(s)
Encéfalo/patología , Epilepsia Refractaria/genética , Proteínas de Transporte de Monosacáridos/genética , Neocórtex/patología , Adolescente , Niño , Exoma/genética , Femenino , Humanos , Masculino , Malformaciones del Desarrollo Cortical/genética , Mutación/genética , Neuronas/patología , Fosfatidilinositol 3-Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Adulto Joven
6.
Neurosurgery ; 82(5): 719-727, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28645214

RESUMEN

BACKGROUND: Accurate tissue sampling in nonenhancing (NE) gliomas is a unique surgical challenge due to their intratumoral histological heterogeneity and absence of contrast enhancement as a guide for intraoperative stereotactic guidance. Instead, T2/fluid-attenuated inversion-recovery (FLAIR) hyperintensity on MRI is commonly used as an imaging surrogate for pathological tissue, but sampling from this region can yield nondiagnostic or underdiagnostic brain tissue. Sodium fluorescein is an intraoperative fluorescent dye that has a high predictive value for tumor identification in areas of contrast enhancement and NE in glioblastomas. However, the underlying histopathological alterations in fluorescent regions of NE gliomas remain undefined. OBJECTIVE: To evaluate whether fluorescein can identify diagnostic tissue and differentiate regions with higher malignant potential during surgery for NE gliomas, thus improving sampling accuracy. METHODS: Thirteen patients who presented with NE, T2/FLAIR hyperintense lesions suspicious for glioma received fluorescein (10%, 3 mg/kg intravenously) during surgical resection. RESULTS: Patchy fluorescence was identified within the T2/FLAIR hyperintense area in 10 of 13 (77%) patients. Samples taken from fluorescent regions were more likely to demonstrate diagnostic glioma tissue and cytologic atypia (P < .05). Fluorescein demonstrated a 95% positive predictive value for the presence of diagnostic tissue. Samples from areas of fluorescence also demonstrated greater total cell density and higher Ki-67 labeling than nonfluorescent biopsies (P < .05). CONCLUSION: Fluorescence in NE gliomas is highly predictive of diagnostic tumor tissue and regions of higher cell density and proliferative activity.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Fluoresceína/uso terapéutico , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Humanos
7.
World Neurosurg ; 107: 451-463, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28804038

RESUMEN

OBJECTIVE: Subependymomas are infrequent, low-grade gliomas associated with the ventricular system and the spinal cord. Little is known about the origin and natural history of these slow-growing lesions. METHODS: We identified all patients with pathologically proven subependymomas presenting to our institution between 1998 and 2016. We retrospectively reviewed clinical, radiographic, histologic, and surgical outcomes data in all patients who underwent surgical resection. Immunohistochemical analyses for cell lineage markers were performed. RESULTS: A total of 31 patients with pathologically proven subependymomas were identified. Of these, 7 asymptomatic lesions were discovered at autopsy and 24 symptomatic cases were treated surgically. There were 15 (48%) lateral ventricle tumors, 11 (35%) fourth ventricular tumors, and 5 (17%) spinal tumors. Symptomatic intracranial lesions most commonly presented with headaches and balance and gait abnormalities. Subependymomas had no distinguishing radiographic features that provided definitive preoperative diagnosis. At last follow-up, no patient treated surgically experienced recurrence. Immunohistochemical analyses demonstrated a diffusely GFAP-positive glial neoplasm with mixed populations of cells that were variably positive for Olig2, NHERF1, Sox2, and CD44. The Ki67 proliferation index was generally low (<1% in many of the tumors). CONCLUSIONS: Subependymomas demonstrate mixed populations of cells expressing glial lineage markers as well as putative stem cell markers, suggesting these tumors may arise from multipotent glial progenitors that reside in the subventricular zone. Definitive diagnosis requires surgical sampling. Although the clinical course of subependymomas appears benign, the inability to radiographically diagnose these lesions, and the possibility of an alternative malignant lesion support a low threshold for early and safe maximal resection.


Asunto(s)
Neoplasias del Ventrículo Cerebral/patología , Glioma Subependimario/patología , Neoplasias de la Médula Espinal/patología , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Neoplasias del Ventrículo Cerebral/cirugía , Femenino , Trastornos Neurológicos de la Marcha/etiología , Glioma Subependimario/cirugía , Trastornos de Cefalalgia/etiología , Trastornos de Cefalalgia/patología , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Equilibrio Postural/fisiología , Estudios Retrospectivos , Neoplasias de la Médula Espinal/cirugía
8.
J Neurosurg ; 127(1): 111-122, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27715437

RESUMEN

OBJECTIVE Extent of resection is an important prognostic factor in patients undergoing surgery for glioblastoma (GBM). Recent evidence suggests that intravenously administered fluorescein sodium associates with tumor tissue, facilitating safe maximal resection of GBM. In this study, the authors evaluate the safety and utility of intraoperative fluorescein guidance for the prediction of histopathological alteration both in the contrast-enhancing (CE) regions, where this relationship has been established, and into the non-CE (NCE), diffusely infiltrated margins. METHODS Thirty-two patients received fluorescein sodium (3 mg/kg) intravenously prior to resection. Fluorescence was intraoperatively visualized using a Zeiss Pentero surgical microscope equipped with a YELLOW 560 filter. Stereotactically localized biopsy specimens were acquired from CE and NCE regions based on preoperative MRI in conjunction with neuronavigation. The fluorescence intensity of these specimens was subjectively classified in real time with subsequent quantitative image analysis, histopathological evaluation of localized biopsy specimens, and radiological volumetric assessment of the extent of resection. RESULTS Bright fluorescence was observed in all GBMs and localized to the CE regions and portions of the NCE margins of the tumors, thus serving as a visual guide during resection. Gross-total resection (GTR) was achieved in 84% of the patients with an average resected volume of 95%, and this rate was higher among patients for whom GTR was the surgical goal (GTR achieved in 93.1% of patients, average resected volume of 99.7%). Intraoperative fluorescein staining correlated with histopathological alteration in both CE and NCE regions, with positive predictive values by subjective fluorescence evaluation greater than 96% in NCE regions. CONCLUSIONS Intraoperative administration of fluorescein provides an easily visualized marker for glioma pathology in both CE and NCE regions of GBM. These findings support the use of fluorescein as a microsurgical adjunct for guiding GBM resection to facilitate safe maximal removal.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Glioblastoma/patología , Glioblastoma/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Femenino , Fluoresceína/administración & dosificación , Glioblastoma/diagnóstico por imagen , Humanos , Periodo Intraoperatorio , Masculino , Márgenes de Escisión , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos/métodos , Cirugía Asistida por Computador , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 113(25): E3529-37, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27261081

RESUMEN

Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and ß-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a "signature" set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Neoplasias Encefálicas/inmunología , Glioma/inmunología , Humanos
10.
Proc Natl Acad Sci U S A ; 111(34): 12550-5, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114226

RESUMEN

Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtype-specific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/clasificación , Medios de Contraste , Femenino , Glioblastoma/clasificación , Humanos , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , ARN Neoplásico/genética , Análisis de Secuencia de ARN , Transcriptoma , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA