Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139901

RESUMEN

Electronic devices are sensitive to electromagnetic (EM) emissions, and require electromagnetic shielding protection to ensure good operation, and prevent noise, malfunctioning, or even burning. To ensure protection, it is important to develop suitable material and design solutions for electronic enclosures. Most common enclosures are made with metal alloys using traditional manufacturing methods. However, using thermoplastic composites combined with additive manufacturing (AM) technologies emerges as an alternative that enables the fabrication of complex parts that are lightweight, consolidated, and oxidation- and corrosion-resistant. In this research, an AM technique based on material extrusion was used to print 2 mm-thick specimens with a multi-material made of micro-carbon fiber (CF)-filled polyamide that was reinforced at specific layers using continuous carbon fibers stacked with a 90° rotation to each other. The specimens' electromagnetic shielding effectiveness (EMSE) was evaluated in the frequency band of 0.03-3 GHz using the coaxial transmission line method. Depending on the number of CF layers, the EM shielding obtained can be up to 70 dB, with a specific shielding up to 60 dB.cm3/g, predominantly by the absorption mechanism, being 22 times higher than without the CF layers. These findings promote this innovative approach to lightweight customizable solutions for EM shielding applications.

2.
Polymers (Basel) ; 13(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066642

RESUMEN

The main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure's borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young's modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young's modulus. The results for the single maximum bulk for the mean values for experimental compressive Young's modulus (Ex¯) with 60%Vf show a deviation of 9.15%. The single maximum shear for the experimental compressive Young's modulus mean values (Ex¯) with 60%Vf, exhibit a deviation of 11.73%. For graded structures, the experimental mean values of compressive Young's moduli (Ex¯), compared with predicted total Young's moduli (ESe), show a deviation of 6.96 for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young's modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials.

3.
Materials (Basel) ; 14(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921131

RESUMEN

Additive Manufacturing (AM) technology has been increasing its penetration not only for the production of prototypes and validation models, but also for final parts. This technology allows producing parts with almost no geometry restrictions, even on a micro-scale. However, the micro-Detail (mD) measurement of complex parts remains an open field of investigation. To be able to develop all the potential that this technology offers, it is necessary to quantify a process's precision limitations, repeatability, and reproducibility. New design methodologies focus on optimization, designing microstructured parts with a complex material distribution. These methodologies are based on mathematical formulations, whose numerical models assume the model discretization through volumetric unitary elements (voxels) with explicit dimensions and geometries. The accuracy of these models in predicting the behavior of the pieces is influenced by the fidelity of the object's physical reproduction. Despite that the Material Jetting (MJ) process makes it possible to produce complex parts, it is crucial to experimentally establish the minimum dimensional and geometric limits to produce parts with mDs. This work aims to support designers and engineers in selecting the most appropriate scale to produce parts discretized by hexahedral meshes (cubes). This study evaluated the dimensional and geometric precision of MJ equipment in the production of mDs (cubes) comparing the nominal design dimensions. A Sample Test (ST) with different sizes of mDs was modeled and produced. The dimensional and geometric precision of the mDs were quantified concerning the nominal value and the calculated deviations. From the tests performed, it was possible to conclude that: (i) more than 90% of all analyzed mDs exhibit three dimensions (xyz) higher than the nominal ones; (ii) for micro-details smaller than 423 µm, they show a distorted geometry, and below 212 µm, printing fails.

4.
Materials (Basel) ; 14(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919652

RESUMEN

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA