Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Function (Oxf) ; 5(4)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38985001

RESUMEN

A detailed knowledge of the lipid composition of components of nephrons is crucial for understanding physiological processes and the development of kidney diseases. However, the lipidomic composition of kidney tubular segments is unknown. We manually isolated the proximal convoluted tubule (PCT), the cortical thick ascending limb of Henle's loop, and the cortical collecting duct from 5 lean and obese mice and subjected the samples to shotgun lipidomics analysis by high-resolution mass spectrometry acquisition. Across all samples, more than 500 lipid species were identified, quantified, and compared. We observed significant compositional differences among the 3 tubular segments, which serve as true signatures. These intrinsic lipidomic features are associated with a distinct proteomic program that regulates highly specific physiological functions. The distinctive lipidomic features of each of the 3 segments are mostly based on the relative composition of neutral lipids, long-chain polyunsaturated fatty acids, sphingolipids, and ether phospholipids. These features support the hypothesis of a lipotype assigned to specific tubular segments. Obesity profoundly impacts the lipotype of PCT. In conclusion, we present a comprehensive lipidomic analysis of 3 cortical segments of mouse kidney tubules. This valuable resource provides unparalleled detail that enhances our understanding of tubular physiology and the potential impact of pathological conditions.


Asunto(s)
Lipidómica , Animales , Ratones , Ratones Endogámicos C57BL , Masculino , Obesidad/metabolismo , Túbulos Renales Proximales/metabolismo , Corteza Renal/metabolismo , Corteza Renal/química , Lípidos/análisis , Metabolismo de los Lípidos/fisiología , Esfingolípidos/metabolismo
3.
iScience ; 27(6): 109737, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799564

RESUMEN

Long-chain acyl-CoA synthetase family 4 (ACSL4) metabolizes long-chain polyunsaturated fatty acids (PUFAs), enriching cell membranes with phospholipids susceptible to peroxidation and drive ferroptosis. The role of ACSL4 and ferroptosis upon endoplasmic-reticulum (ER)-stress-induced acute kidney injury (AKI) is unknown. We used lipidomic, molecular, and cellular biology approaches along with a mouse model of AKI induced by ER stress to investigate the role of ACSL4 regulation in membrane lipidome remodeling in the injured tubular epithelium. Tubular epithelial cells (TECs) activate ACSL4 in response to STAT3 signaling. In this context, TEC membrane lipidome is remodeled toward PUFA-enriched triglycerides instead of PUFA-bearing phospholipids. TECs expressing ACSL4 in this setting are not vulnerable to ferroptosis. Thus, ACSL4 activity in TECs is driven by STAT3 signaling, but ACSL4 alone is not enough to sensitize ferroptosis, highlighting the significance of the biological context associated with the study model.

4.
Nat Commun ; 15(1): 3767, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704407

RESUMEN

Tools for accessing and studying organelles remain underdeveloped. Here, we present a method by which giant organelle vesicles (GOVs) are generated by submitting cells to a hypotonic medium followed by plasma membrane breakage. By this means, GOVs ranging from 3 to over 10 µm become available for micromanipulation. GOVs are made from organelles such as the endoplasmic reticulum, endosomes, lysosomes and mitochondria, or in contact with one another such as giant mitochondria-associated ER membrane vesicles. We measure the mechanical properties of each organelle-derived GOV and find that they have distinct properties. In GOVs procured from Cos7 cells, for example, bending rigidities tend to increase from the endoplasmic reticulum to the plasma membrane. We also found that the mechanical properties of giant endoplasmic reticulum vesicles (GERVs) vary depending on their interactions with other organelles or the metabolic state of the cell. Lastly, we demonstrate GERVs' biochemical activity through their capacity to synthesize triglycerides and assemble lipid droplets. These findings underscore the potential of GOVs as valuable tools for studying the biophysics and biology of organelles.


Asunto(s)
Retículo Endoplásmico , Membranas Intracelulares , Animales , Chlorocebus aethiops , Células COS , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Membrana Celular/metabolismo , Mitocondrias/metabolismo , Orgánulos/metabolismo , Gotas Lipídicas/metabolismo , Triglicéridos/metabolismo , Humanos , Lisosomas/metabolismo
5.
bioRxiv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562716

RESUMEN

Cancer cell fate has been widely ascribed to mutational changes within protein-coding genes associated with tumor suppressors and oncogenes. In contrast, the mechanisms through which the biophysical properties of membrane lipids influence cancer cell survival, dedifferentiation and metastasis have received little scrutiny. Here, we report that cancer cells endowed with a high metastatic ability and cancer stem cell-like traits employ ether lipids to maintain low membrane tension and high membrane fluidity. Using genetic approaches and lipid reconstitution assays, we show that these ether lipid-regulated biophysical properties permit non-clathrin-mediated iron endocytosis via CD44, leading directly to significant increases in intracellular redox-active iron and enhanced ferroptosis susceptibility. Using a combination of in vitro three-dimensional microvascular network systems and in vivo animal models, we show that loss of ether lipids also strongly attenuates extravasation, metastatic burden and cancer stemness. These findings illuminate a mechanism whereby ether lipids in carcinoma cells serve as key regulators of malignant progression while conferring a unique vulnerability that can be exploited for therapeutic intervention.

6.
Res Sq ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659936

RESUMEN

Iron catalyses the oxidation of lipids in biological membranes and promotes a form of cell death referred to as ferroptosis1-3. Identifying where this chemistry takes place in the cell can inform the design of drugs capable of inducing or inhibiting ferroptosis in various disease-relevant settings. Whereas genetic approaches have revealed underlying mechanisms of lipid peroxide detoxification1,4,5, small molecules can provide unparalleled spatiotemporal control of the chemistry at work6. Here, we show that the ferroptosis inhibitor liproxstatin-1 (Lip-1) exerts a protective activity by inactivating iron in lysosomes. Based on this, we designed the bifunctional compound fentomycin that targets phospholipids at the plasma membrane and activates iron in lysosomes upon endocytosis, promoting oxidative degradation of phospholipids and ferroptosis. Fentomycin effectively kills primary sarcoma and pancreatic ductal adenocarcinoma cells. It acts as a lipolysis-targeting chimera (LIPTAC), preferentially targeting iron-rich CD44high cell-subpopulations7,8 associated with the metastatic disease and drug resistance9,10. Furthermore, we demonstrate that fentomycin also depletes CD44high cells in vivo and reduces intranodal tumour growth in an immunocompetent murine model of breast cancer metastasis. These data demonstrate that lysosomal iron triggers ferroptosis and that lysosomal iron redox chemistry can be exploited for therapeutic benefits.

7.
J Lipid Res ; 64(9): 100419, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482218

RESUMEN

Oxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens. Cholesteryl hemiazelate (ChA), the ChE of azelaic acid (n-nonane-1,9-dioic acid), was the most prevalent ChE identified in both cases. Importantly, human monocytes, monocyte-derived macrophages, and neutrophils exhibit inflammatory features when exposed to subtoxic concentrations of ChA in vitro. ChA increases the secretion of proinflammatory cytokines such as interleukin-1ß and interleukin-6 and modulates the surface-marker profile of monocytes and monocyte-derived macrophage. In vivo, when zebrafish larvae were fed with a ChA-enriched diet, they exhibited neutrophil and macrophage accumulation in the vasculature in a caspase 1- and cathepsin B-dependent manner. ChA also triggered lipid accumulation at the bifurcation sites of the vasculature of the zebrafish larvae and negatively impacted their life expectancy. We conclude that ChA behaves as an endogenous damage-associated molecular pattern with inflammatory and proatherogenic properties.


Asunto(s)
Aterosclerosis , Pez Cebra , Animales , Humanos , Ésteres del Colesterol , Monocitos , Inflamación , Ésteres
8.
Elife ; 122023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37190854

RESUMEN

Dietary compounds can affect the development of inflammatory responses at distant sites. However, the mechanisms involved remain incompletely understood. Here, we addressed the influence on allergic responses of dietary agonists of aryl hydrocarbon receptor (AhR). In cutaneous papain-induced allergy, we found that lack of dietary AhR ligands exacerbates allergic responses. This phenomenon was tissue-specific as airway allergy was unaffected by the diet. In addition, lack of dietary AhR ligands worsened asthma-like allergy in a model of 'atopic march.' Mice deprived of dietary AhR ligands displayed impaired Langerhans cell migration, leading to exaggerated T cell responses. Mechanistically, dietary AhR ligands regulated the inflammatory profile of epidermal cells, without affecting barrier function. In particular, we evidenced TGF-ß hyperproduction in the skin of mice deprived of dietary AhR ligands, explaining Langerhans cell retention. Our work identifies an essential role for homeostatic activation of AhR by dietary ligands in the dampening of cutaneous allergic responses and uncovers the importance of the gut-skin axis in the development of allergic diseases.


Asunto(s)
Dermatitis Atópica , Dieta , Hipersensibilidad , Receptores de Hidrocarburo de Aril , Animales , Ratones , Células de Langerhans , Ligandos , Receptores de Hidrocarburo de Aril/agonistas , Piel
9.
Front Bioeng Biotechnol ; 11: 1128371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911201

RESUMEN

Currently available enzyme replacement therapies for lysosomal storage diseases are limited in their effectiveness due in part to short circulation times and suboptimal biodistribution of the therapeutic enzymes. We previously engineered Chinese hamster ovary (CHO) cells to produce α-galactosidase A (GLA) with various N-glycan structures and demonstrated that elimination of mannose-6-phosphate (M6P) and conversion to homogeneous sialylated N-glycans prolonged circulation time and improved biodistribution of the enzyme following a single-dose infusion into Fabry mice. Here, we confirmed these findings using repeated infusions of the glycoengineered GLA into Fabry mice and further tested whether this glycoengineering approach, Long-Acting-GlycoDesign (LAGD), could be implemented on other lysosomal enzymes. LAGD-engineered CHO cells stably expressing a panel of lysosomal enzymes [aspartylglucosamine (AGA), beta-glucuronidase (GUSB), cathepsin D (CTSD), tripeptidyl peptidase (TPP1), alpha-glucosidase (GAA) or iduronate 2-sulfatase (IDS)] successfully converted all M6P-containing N-glycans to complex sialylated N-glycans. The resulting homogenous glycodesigns enabled glycoprotein profiling by native mass spectrometry. Notably, LAGD extended the plasma half-life of all three enzymes tested (GLA, GUSB, AGA) in wildtype mice. LAGD may be widely applicable to lysosomal replacement enzymes to improve their circulatory stability and therapeutic efficacy.

10.
JCI Insight ; 7(18)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998043

RESUMEN

Energy metabolism failure in proximal tubule cells (PTCs) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic, and lipidomic approaches in experimental models and patient cohorts to investigate the molecular basis of the progression to chronic kidney allograft injury initiated by ischemia/reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was substantially enriched with long chain fatty acids (FAs). We identified a renal FA-related gene signature with low levels of carnitine palmitoyltransferase 2 (Cpt2) and acyl-CoA synthetase medium chain family member 5 (Acsm5) and high levels of acyl-CoA synthetase long chain family member 4 and 5 (Acsl4 and Acsl5) associated with IRI, transition to chronic injury, and established chronic kidney disease in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-Acsl4+Acsl5+Acsm5- PTCs failing to recover from IRI as identified by single-nucleus RNA-Seq. In vitro experiments indicated that ER stress contributed to CPT2 repression, which, in turn, promoted lipids' accumulation, drove profibrogenic epithelial phenotypic changes, and activated the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation engaged an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule, sustaining the progression to chronic kidney allograft injury.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Riñón , Animales , Carnitina O-Palmitoiltransferasa/genética , Coenzima A , Ácidos Grasos/metabolismo , Riñón/metabolismo , Ligasas , Ratones
11.
EMBO Mol Med ; 13(10): e13742, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34411438

RESUMEN

Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Reposicionamiento de Medicamentos , Humanos , Lisosomas , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Fenotipo , Tamoxifeno/farmacología
12.
Biomed Pharmacother ; 138: 111526, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34311528

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes challenging immune and inflammatory phenomena. Though various therapeutic possibilities have been tested against coronavirus disease 2019 (COVID-19), the most adequate treatment has not yet been established. Propolis is a natural product with considerable evidence of immunoregulatory and anti-inflammatory activities, and experimental data point to potential against viral targets. We hypothesized that propolis can reduce the negative effects of COVID-19. METHODS: In a randomized, controlled, open-label, single-center trial, hospitalized adult COVID-19 patients were treated with a standardized green propolis extract (EPP-AF®ï¸) as an adjunct therapy. Patients were allocated to receive standard care plus an oral dose of 400 mg or 800 mg/day of green propolis for seven days, or standard care alone. Standard care included all necessary interventions, as determined by the attending physician. The primary end point was the time to clinical improvement, defined as the length of hospital stay or oxygen therapy dependency duration. Secondary outcomes included acute kidney injury and need for intensive care or vasoactive drugs. Patients were followed for 28 days after admission. RESULTS: We enrolled 124 patients; 40 were assigned to EPP-AF®ï¸ 400 mg/day, 42 to EPP-AF®ï¸ 800 mg/day, and 42 to the control group. The length of hospital stay post-intervention was shorter in both propolis groups than in the control group; lower dose, median 7 days versus 12 days (95% confidence interval [CI] -6.23 to -0.07; p = 0.049) and higher dose, median 6 days versus 12 days (95% CI -7.00 to -1.09; p = 0.009). Propolis did not significantly affect the need for oxygen supplementation. In the high dose propolis group, there was a lower rate of acute kidney injury than in the controls (4.8 vs 23.8%), (odds ratio [OR] 0.18; 95% CI 0.03-0.84; p = 0.048). No patient had propolis treatment discontinued due to adverse events. CONCLUSIONS: Addition of propolis to the standard care procedures resulted in clinical benefits for the hospitalized COVID-19 patients, especially evidenced by a reduction in the length of hospital stay. Consequently, we conclude that propolis can reduce the impact of COVID-19.


Asunto(s)
Lesión Renal Aguda/prevención & control , Tratamiento Farmacológico de COVID-19 , Hospitalización , Própolis/uso terapéutico , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Adulto , Anciano , Brasil , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/virología , Femenino , Humanos , Pacientes Internos , Tiempo de Internación , Masculino , Persona de Mediana Edad , Terapia por Inhalación de Oxígeno , Própolis/efectos adversos , Respiración Artificial , Factores de Tiempo , Resultado del Tratamiento
13.
EBioMedicine ; 70: 103504, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34311325

RESUMEN

BACKGROUND: Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lipids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However, deep lipid profiles of major chronic inflammatory diseases have not been compared. METHODS: Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analysis without liquid chromatographic separation and compared to each other and to age-matched controls. Lipid profiling of 596 lipids was performed on a cohort of 427 individuals. Machine learning classifiers based on the plasma lipidomes were used to distinguish the two chronic inflammatory diseases from each other and from the controls. FINDINGS: Analysis of the lipidomes enabled separation of the studied chronic inflammatory diseases from controls based on independent validation test set classification performance (CVD vs control - Sensitivity: 0.94, Specificity: 0.88; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control - Sensitivity: 1, Specificity: 0.93) and from each other (SLE vs CVD ‒ Sensitivity: 0.91, Specificity: 1; IS vs SLE - Sensitivity: 1, Specificity: 0.82). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups from each other and from the controls, and partially separated CVD severities, as classified into five clinical groups. Dysregulated lipids are partially but not fully counterbalanced by statin treatment. INTERPRETATION: Dysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes. FUNDING: Full list of funding sources at the end of the manuscript.


Asunto(s)
Aterosclerosis/sangre , Accidente Cerebrovascular Isquémico/sangre , Lipidómica/métodos , Lípidos/sangre , Lupus Eritematoso Sistémico/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad
14.
Aging Cell ; 19(10): e13214, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32898317

RESUMEN

The dauer larva of Caenorhabditis elegans, destined to survive long periods of food scarcity and harsh environment, does not feed and has a very limited exchange of matter with the exterior. It was assumed that the survival time is determined by internal energy stores. Here, we show that ethanol can provide a potentially unlimited energy source for dauers by inducing a controlled metabolic shift that allows it to be metabolized into carbohydrates, amino acids, and lipids. Dauer larvae provided with ethanol survive much longer and have greater desiccation tolerance. On the cellular level, ethanol prevents the deterioration of mitochondria caused by energy depletion. By modeling the metabolism of dauers of wild-type and mutant strains with and without ethanol, we suggest that the mitochondrial health and survival of an organism provided with an unlimited source of carbon depends on the balance between energy production and toxic product(s) of lipid metabolism.


Asunto(s)
Caenorhabditis elegans/metabolismo , Etanol/metabolismo , Animales , Desecación/métodos , Larva , Metabolismo de los Lípidos
15.
Sci Rep ; 8(1): 14764, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282999

RESUMEN

Shotgun lipidomic analysis of 203 lipids in 13 lipid classes performed on blood plasma of donors who had just suffered an acute coronary syndrome (ACS, n = 74), or an ischemic stroke (IS, n = 21), or who suffer from stable angina pectoris (SAP, n = 78), and an age-matched control cohort (n = 52), showed some of the highest inter-lipid class correlations between cholesteryl esters (CE) and phosphatidylcholines (PC) sharing a common fatty acid. The concentration of lysophospatidylcholine (LPC) and ratios of concentrations of CE to free cholesterol (Chol) were also lower in the CVD cohorts than in the control cohort, indicating a deficient conversion of Chol to CE in the blood plasma in the CVD subjects. A non-equilibrium reaction quotient, Q', describing the global homeostasis of cholesterol as manifested in the blood plasma was shown to have a value in the CVD cohorts (Q'ACS = 0.217 ± 0.084; Q'IS = 0.201 ± 0.084; Q'SAP = 0.220 ± 0.071) that was about one third less than in the control cohort (Q'Control = 0.320 ± 0.095, p < 1 × 10-4), suggesting its potential use as a rapid predictive/diagnostic measure of CVD-related irregularities in cholesterol homeostasis.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Ésteres del Colesterol/sangre , Colesterol/sangre , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Colesterol/genética , Ésteres del Colesterol/genética , Ácidos Grasos/sangre , Ácidos Grasos/genética , Femenino , Homeostasis/genética , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilcolinas/sangre , Fosfatidilcolinas/genética
16.
Proc Math Phys Eng Sci ; 474(2210): 20170763, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29507519

RESUMEN

We consider a family of homogeneous nonlinear dispersive equations with two arbitrary parameters. Conservation laws are established from the point symmetries and imply that the whole family admits square integrable solutions. Recursion operators are found for two members of the family investigated. For one of them, a Lax pair is also obtained, proving its complete integrability. From the Lax pair, we construct a Miura-type transformation relating the original equation to the Korteweg-de Vries (KdV) equation. This transformation, on the other hand, enables us to obtain solutions of the equation from the kernel of a Schrödinger operator with potential parametrized by the solutions of the KdV equation. In particular, this allows us to exhibit a kink solution to the completely integrable equation from the 1-soliton solution of the KdV equation. Finally, peakon-type solutions are also found for a certain choice of the parameters, although for this particular case the equation is reduced to a homogeneous second-order nonlinear evolution equation.

17.
Nat Chem Biol ; 13(6): 647-654, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28369040

RESUMEN

The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann-Pick C1 (NPC1) and DAF-7/TGF-ß mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-ß, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.


Asunto(s)
Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Cromatografía Liquida , Espectrometría de Masas , Estructura Molecular , Mutación , Fosforilación
18.
PLoS One ; 11(12): e0167208, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907064

RESUMEN

The free-living soil nematode Caenorhabditis elegans adapts its development to the availability of food. When food is scarce and population density is high, worms enter a developmentally arrested non-feeding diapause stage specialized for long-term survival called the dauer larva. When food becomes available, they exit from the dauer stage, resume growth and reproduction. It has been postulated that compound(s) present in food, referred to as the "food signal", promote exit from the dauer stage. In this study, we have identified NAD+ as a component of bacterial extract that promotes dauer exit. NAD+, when dissolved in alkaline medium, causes opening of the mouth and ingestion of food. We also show that to initiate exit from the dauer stage in response to NAD+ worms require production of serotonin. Thus, C. elegans can use redox cofactors produced by dietary organisms to sense food.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Caenorhabditis elegans/fisiología , Estadios del Ciclo de Vida , NAD/metabolismo , Animales , NADP/metabolismo , Serotonina/metabolismo
19.
Eur J Lipid Sci Technol ; 117(10): 1540-1549, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26494980

RESUMEN

Blood plasma has gained protagonism in lipidomics studies due to its availability, uncomplicated collection and preparation, and informative readout of physiological status. At the same time, it is also technically challenging to analyze due to its complex lipid composition affected by many factors, which can hamper the throughput and/or lipidomics coverage. To tackle these issues, we developed a comprehensive, high throughput, and quantitative mass spectrometry-based shotgun lipidomics platform for blood plasma lipid analyses. The main hallmarks of this technology are (i) it is comprehensive, covering 22 quantifiable different lipid classes encompassing more than 200 lipid species; (ii) it is amenable to high-throughput, with less than 5 min acquisition time allowing the complete analysis of 200 plasma samples per day; (iii) it achieves absolute quantification, by inclusion of internal standards for every lipid class measured; (iv) it is highly reproducible, achieving an average coefficient of variation of <10% (intra-day), approx. 10% (inter-day), and approx. 15% (inter-site) for most lipid species; (v) it is easily transferable allowing the direct comparison of data acquired in different sites. Moreover, we thoroughly assessed the influence of blood stabilization with different anticoagulants and freeze-thaw cycles to exclude artifacts generated by sample preparation. Practical applications: This shotgun lipidomics platform can be implemented in different laboratories without compromising reproducibility, allowing multi-site studies and inter-laboratory comparisons. This possibility combined with the high-throughput, broad lipidomic coverage and absolute quantification are important aspects for clinical applications and biomarker research.

20.
Front Cell Neurosci ; 9: 325, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26379497

RESUMEN

Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid (CF) in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membrane's lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS), among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the CF of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point toward that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA