Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895207

RESUMEN

Spinal cord injury (SCI) results in a plethora of physiological dysfunctions across all body systems, including intestinal dysmotility and atrophy of the enteric nervous system (ENS). Typically, the ENS has capacity to recover from perturbation, so it is unclear why intestinal pathophysiologies persist after traumatic spinal injury. With emerging evidence demonstrating SCI-induced alterations to the gut microbiome composition, we hypothesized that modulation of the gut microbiome could contribute to enteric nervous system recovery after injury. Here, we show that intervention with the dietary fiber, inulin prevents ENS atrophy and limits SCI-induced intestinal dysmotility in mice. However, SCI-associated microbiomes and exposure to specific SCI-sensitive gut microbes are not sufficient to modulate injury-induced intestinal dysmotility. Intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions and phenocopies inulin treatment in injured mice, implicating these microbiome metabolites in protection of the ENS. Notably, inulin-mediated resilience is dependent on signaling by the cytokine IL-10, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience following SCI. Overall, we demonstrate that diet and microbially-derived signals distinctly impact recovery of the ENS after traumatic spinal injury. This protective diet-microbiome-immune axis may represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.

3.
NPJ Parkinsons Dis ; 9(1): 159, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052871

RESUMEN

Parkinson's disease is the fastest-growing neurologic disease with seemingly no means of prevention. Intrinsic risk factors (age, sex, and genetics) are inescapable, but environmental factors are not. We identified repeated blows to the head in sports/combat as a potential new risk factor. 23% of PD cases in females were attributable to pesticide/herbicide exposure, and 30% of PD in males were attributable to pesticides/herbicides, military-related chemical exposures, and repeated blows to the head, and therefore could have potentially been prevented.

4.
Semin Neurol ; 43(4): 518-529, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37562449

RESUMEN

The human gastrointestinal tract is home to trillions of microorganisms-collectively referred to as the gut microbiome-that maintain a symbiotic relationship with their host. This diverse community of microbes grows and changes as we do, with developmental, lifestyle, and environmental factors all shaping microbiome community structure. Increasing evidence suggests this relationship is bidirectional, with the microbiome also influencing host physiological processes. For example, changes in the gut microbiome have been shown to alter neurodevelopment and have lifelong effects on the brain and behavior. Age-related changes in gut microbiome composition have also been linked to inflammatory changes in the brain, perhaps increasing susceptibility to neurological disease. Indeed, associations between gut dysbiosis and many age-related neurological diseases-including Parkinson's disease, Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis-have been reported. Further, microbiome manipulation in animal models of disease highlights a potential role for the gut microbiome in disease development and progression. Although much remains unknown, these associations open up an exciting new world of therapeutic targets, potentially allowing for improved quality of life for a wide range of patient populations.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Animales , Humanos , Microbioma Gastrointestinal/fisiología , Calidad de Vida , Encéfalo
5.
medRxiv ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292848

RESUMEN

Parkinson's disease is the fastest growing neurologic disease with seemingly no means for prevention. Intrinsic risk factors (age, sex, genetics) are inescapable, but environmental factors are not. We studied population attributable fraction and estimated fraction of PD that could be reduced if modifiable risk factors were eliminated. Assessing several known risk factors simultaneously in one study, we demonstrate that all were operative and independent, underscoring etiological heterogeneity within a single population. We investigated repeated blows to head in sports or combat as a potential new risk factor, and found it was associated with two-fold increased risk of PD. Considering modifiable risk factors, 23% of PD cases in females were attributable to pesticides/herbicides exposure, and 30% of PD cases in males was attributable to pesticides/herbicides, Agent Orange/chemical warfare, and repeated blows to the head. Thus, one-in-three cases of PD in males, and one-in-four cases in females could have potentially been prevented.

6.
Front Cell Neurosci ; 17: 895017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006470

RESUMEN

Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer's disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic.

7.
Cell Host Microbe ; 31(2): 171-172, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36758517

RESUMEN

The etiology of chronic fatigue syndrome (CFS) is largely unknown. In this issue of Cell Host and Microbe, Guo et al. and Xiong et al. report CFS-associated gut microbiome and metabolomic datasets-implicating dysregulation of immune modulating molecules. This may provide a framework for new therapeutic paradigms and disease origins.


Asunto(s)
Síndrome de Fatiga Crónica , Microbioma Gastrointestinal , Humanos
8.
Nat Commun ; 13(1): 6958, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376318

RESUMEN

Parkinson's disease (PD) may start in the gut and spread to the brain. To investigate the role of gut microbiome, we conducted a large-scale study, at high taxonomic resolution, using uniform standardized methods from start to end. We enrolled 490 PD and 234 control individuals, conducted deep shotgun sequencing of fecal DNA, followed by metagenome-wide association studies requiring significance by two methods (ANCOM-BC and MaAsLin2) to declare disease association, network analysis to identify polymicrobial clusters, and functional profiling. Here we show that over 30% of species, genes and pathways tested have altered abundances in PD, depicting a widespread dysbiosis. PD-associated species form polymicrobial clusters that grow or shrink together, and some compete. PD microbiome is disease permissive, evidenced by overabundance of pathogens and immunogenic components, dysregulated neuroactive signaling, preponderance of molecules that induce alpha-synuclein pathology, and over-production of toxicants; with the reduction in anti-inflammatory and neuroprotective factors limiting the capacity to recover. We validate, in human PD, findings that were observed in experimental models; reconcile and resolve human PD microbiome literature; and provide a broad foundation with a wealth of concrete testable hypotheses to discern the role of the gut microbiome in PD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Microbioma Gastrointestinal/genética , Enfermedad de Parkinson/genética , Disbiosis/genética , Metagenómica/métodos , Metagenoma/genética
9.
Int Rev Neurobiol ; 167: 251-290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36427958

RESUMEN

Spinal cord injuries are an enormous burden on injured individuals and their caregivers. The pathophysiological effects of injury are not limited to the spine and limb function, but affect numerous body systems. Growing observations in human studies and experimental models suggest that the gut microbiome is altered following spinal cord injury. Given the importance of signals derived from the gut microbiome for host physiology, it is possible that injury-triggered dysbiosis subsequently affects aspects of recovery. Here, we review emerging literature on the role of the microbiome following spinal cord injury. Specifically, we highlight findings from both human and experimental studies that correlate taxonomic changes to aspects of injury recovery. Examination of both observational and emerging interventional studies supports the notion that future therapeutic avenues for spinal cord injury pathologies may lie at the interface of the host and indigenous microbes.


Asunto(s)
Microbioma Gastrointestinal , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/patología
10.
Int Rev Neurobiol ; 167: xi-xvi, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36427961

RESUMEN

The complex interactions between the human body and its indigenous microbes have come into focus as key mediators of neurological health. With both established and emerging association studies, alterations to the gut microbiome are observed to co-occur with many neurological diseases. Whether these associations are due to microbiome-mediated contributions to human health or an effect of the neurological disease itself is largely unknown across conditions. Here, we have collected contributions from a broad group of experts that highlight gut microbiome impacts across numerous neurological conditions. Ranging from neurodevelopmental disorders, to Parkinson's disease, Alzheimer's disease, epilepsy, traumatic injury, and amyotrophic lateral sclerosis, among others, we hope to provide a clearer picture of how our indigenous microbes impact neurological health. The study of these indigenous microbes will continue to reveal critical mechanisms that may 1 day be exploited for therapeutic benefits against these recalcitrant diseases.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Microbiota , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico
11.
Cell Host Microbe ; 30(3): 283-285, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35271800

RESUMEN

A cloudburst of recent research has revealed important contributions of indigenous microbes to host neurological functions. In this issue of Cell Host & Microbe, Mayberis-Perxachs and Castells-Nobau et al. uncover a role for gut-resident bacteriophages in microbiome structure and metabolism with downstream effects on neuronal gene expression and cognition.


Asunto(s)
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Bacteriófagos/genética , Eje Cerebro-Intestino , Neuronas
12.
Nat Neurosci ; 23(3): 327-336, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066981

RESUMEN

Parkinson's disease is a synucleinopathy that is characterized by motor dysfunction, death of midbrain dopaminergic neurons and accumulation of α-synuclein (α-Syn) aggregates. Evidence suggests that α-Syn aggregation can originate in peripheral tissues and progress to the brain via autonomic fibers. We tested this by inoculating the duodenal wall of mice with α-Syn preformed fibrils. Following inoculation, we observed gastrointestinal deficits and physiological changes to the enteric nervous system. Using the AAV-PHP.S capsid to target the lysosomal enzyme glucocerebrosidase for peripheral gene transfer, we found that α-Syn pathology is reduced due to the increased expression of this protein. Lastly, inoculation of α-Syn fibrils in aged mice, but not younger mice, resulted in progression of α-Syn histopathology to the midbrain and subsequent motor defects. Our results characterize peripheral synucleinopathy in prodromal Parkinson's disease and explore cellular mechanisms for the gut-to-brain progression of α-Syn pathology.


Asunto(s)
Encéfalo/patología , Enfermedades del Sistema Digestivo/patología , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , Animales , Duodeno/patología , Sistema Nervioso Entérico/patología , Glucosilceramidasa/biosíntesis , Glucosilceramidasa/genética , Mesencéfalo/patología , Ratones , Ratones Endogámicos C57BL , Trastornos del Movimiento/etiología , Trastornos del Movimiento/patología , Fibras Nerviosas/patología , Nocicepción , Ganglio Nudoso/patología
13.
Elife ; 92020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32043464

RESUMEN

Amyloids are a class of protein with unique self-aggregation properties, and their aberrant accumulation can lead to cellular dysfunctions associated with neurodegenerative diseases. While genetic and environmental factors can influence amyloid formation, molecular triggers and/or facilitators are not well defined. Growing evidence suggests that non-identical amyloid proteins may accelerate reciprocal amyloid aggregation in a prion-like fashion. While humans encode ~30 amyloidogenic proteins, the gut microbiome also produces functional amyloids. For example, curli are cell surface amyloid proteins abundantly expressed by certain gut bacteria. In mice overexpressing the human amyloid α-synuclein (αSyn), we reveal that colonization with curli-producing Escherichia coli promotes αSyn pathology in the gut and the brain. Curli expression is required for E. coli to exacerbate αSyn-induced behavioral deficits, including intestinal and motor impairments. Purified curli subunits accelerate αSyn aggregation in biochemical assays, while oral treatment of mice with a gut-restricted amyloid inhibitor prevents curli-mediated acceleration of pathology and behavioral abnormalities. We propose that exposure to microbial amyloids in the gastrointestinal tract can accelerate αSyn aggregation and disease in the gut and the brain.


Asunto(s)
Encefalopatías/etiología , Proteínas de Escherichia coli/metabolismo , Enfermedades Gastrointestinales/etiología , Sinucleinopatías/etiología , alfa-Sinucleína/metabolismo , Animales , Escherichia coli , Ratones
14.
Nature ; 570(7760): E30-E31, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31127194

RESUMEN

Change history: We could not replicate the results in Fig. 2a and g of this Letter, and new information has revealed a flaw in the interpretation of Fig. 2h. As a result, we do not have evidence to support RNA degradation as the mechanism that underlies Cas9-mediated regulation of FTN_1103 mRNA expression; see accompanying Amendment. This has not been corrected online.

15.
J Neurosci ; 38(44): 9414-9422, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381433

RESUMEN

The gut microbiota has emerged as a critical player in shaping and modulating brain function and has been shown to influence numerous behaviors, including anxiety and depression-like behaviors, sociability, and cognition. However, the effects of the gut microbiota on specific disorders associated with thalamo-cortico-basal ganglia circuits, ranging from compulsive behavior and addiction to altered sensation and motor output, are only recently being explored. Wholesale depletion and alteration of gut microbial communities in rodent models of disorders, such as Parkinson's disease, autism, and addiction, robustly affect movement and motivated behavior. A new frontier therefore lies in identifying specific microbial alterations that affect these behaviors and understanding the underlying mechanisms of action. Comparing alterations in gut microbiota across multiple basal-ganglia associated disease states allows for identification of common mechanistic pathways that may interact with distinct environmental and genetic risk factors to produce disease-specific outcomes.


Asunto(s)
Encéfalo/fisiopatología , Disbiosis/fisiopatología , Microbioma Gastrointestinal/fisiología , Trastornos Mentales/fisiopatología , Motivación/fisiología , Movimiento/fisiología , Animales , Disbiosis/diagnóstico , Disbiosis/psicología , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/psicología
16.
Cell ; 167(6): 1469-1480.e12, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912057

RESUMEN

The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.


Asunto(s)
Enfermedad de Parkinson/microbiología , Enfermedad de Parkinson/patología , Animales , Encéfalo/patología , Disbiosis/patología , Ácidos Grasos/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiopatología , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Ratones , Microglía/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/metabolismo
17.
Cold Spring Harb Protoc ; 2016(12)2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27934695

RESUMEN

Prokaryotes use diverse strategies to improve fitness in the face of different environmental threats and stresses, including those posed by mobile genetic elements (e.g., bacteriophages and plasmids). To defend against these elements, many bacteria and archaea use elegant, RNA-directed, nucleic acid-targeting adaptive restriction machineries called CRISPR -: Cas (CRISPR-associated) systems. While providing an effective defense against foreign genetic elements, these systems have also been observed to play critical roles in regulating bacterial physiology during environmental stress. Increasingly, CRISPR-Cas systems, in particular the Type II systems containing the Cas9 endonuclease, have been exploited for their ability to bind desired nucleic acid sequences, as well as direct sequence-specific cleavage of their targets. Cas9-mediated genome engineering is transcending biological research as a versatile and portable platform for manipulating genetic content in myriad systems. Here, we present a systematic overview of CRISPR-Cas history and biology, highlighting the revolutionary tools derived from these systems, which greatly expand the molecular biologists' toolkit.


Asunto(s)
Archaea/enzimología , Archaea/genética , Bacterias/enzimología , Bacterias/genética , Sistemas CRISPR-Cas , Marcación de Gen/métodos , Transferencia de Gen Horizontal , Secuencias Repetitivas Esparcidas
18.
Cell ; 167(4): 915-932, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814521

RESUMEN

Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease.


Asunto(s)
Encéfalo/fisiología , Microbioma Gastrointestinal , Animales , Conducta , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Trastornos del Neurodesarrollo/microbiología , Embarazo , Vagina/microbiología
19.
Cell Host Microbe ; 17(5): 565-76, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25974299

RESUMEN

Animals share an intimate and life-long partnership with a myriad of resident microbial species, collectively referred to as the microbiota. Symbiotic microbes have been shown to regulate nutrition and metabolism and are critical for the development and function of the immune system. More recently, studies have suggested that gut bacteria can impact neurological outcomes--altering behavior and potentially affecting the onset and/or severity of nervous system disorders. In this review, we highlight emerging evidence that the microbiome extends its influence to the brain via various pathways connecting the gut to the central nervous system. While understanding and appreciation of a gut microbial impact on neurological function is nascent, unraveling gut-microbiome-brain connections holds the promise of transforming the neurosciences and revealing potentially novel etiologies for psychiatric and neurodegenerative disorders.


Asunto(s)
Conducta , Encéfalo/fisiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Animales , Humanos
20.
Curr Opin Infect Dis ; 28(3): 267-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25887612

RESUMEN

PURPOSE OF REVIEW: CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids that adapt as new environmental threats arise. There are emerging examples of CRISPR-Cas functions in bacterial physiology beyond their role in adaptive immunity. This highlights the poorly understood, but potentially common, moonlighting functions of these abundant systems. We propose that these noncanonical CRISPR-Cas activities have evolved to respond to stresses at the cell envelope. RECENT FINDINGS: Here, we discuss recent literature describing the impact of the extracellular environment on the regulation of CRISPR-Cas systems, and the influence of CRISPR-Cas activity on bacterial physiology. These described noncanonical CRISPR-Cas functions allow the bacterial cell to respond to the extracellular environment, primarily through changes in envelope physiology. SUMMARY: This review discusses the expanding noncanonical functions of CRISPR-Cas systems, including their roles in virulence, focusing mainly on their relationship to the cell envelope. We first examine the effects of the extracellular environment on regulation of CRISPR-Cas components, and then discuss the impact of CRISPR-Cas systems on bacterial physiology, concentrating on their roles in influencing interactions with the environment including host organisms.


Asunto(s)
Inmunidad Adaptativa/fisiología , Anticuerpos Antivirales/inmunología , Infecciones Bacterianas/inmunología , Sistemas CRISPR-Cas/fisiología , Proteínas del Envoltorio Viral/inmunología , Infecciones Bacterianas/genética , Interacciones Huésped-Patógeno , Humanos , Filogenia , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA