Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nanotechnology ; 22(8): 085301, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21242619

RESUMEN

We have investigated the lithographic generation of TiO(x) nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures.

2.
J Biotechnol ; 135(3): 255-61, 2008 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-18555551

RESUMEN

Myxobacteria are proficient producers of biologically active secondary metabolites. However, efforts to exploit these natural products for the development of new therapeutics and agrochemicals are frequently hampered by low production levels. We describe here a transposon-based strategy to identify genes encoding regulators of secondary metabolite biosynthesis in the myxobacterium Angiococcus disciformis An d48, which produces the highly efficient electron transport inhibitor myxothiazol. Extracts from 1200 transposon mutants were analyzed by HPLC, leading to the identification of six mutants in which myxothiazol production was increased by as much as 30-fold. Identifying the sites of integration coupled with sequencing of flanking regions, showed that some of the inactivated genes encode proteins with similarity to known bacterial regulators such as two-component systems and serine-threonine protein kinases. However, other gene products do not resemble any characterized proteins. Taken together, these data show that this transposon-based strategy is a valuable tool to identify regulatory genes of secondary metabolism, including gene loci which cannot be detected using current in silico approaches.


Asunto(s)
Biotecnología/métodos , Elementos Transponibles de ADN , Myxococcales/citología , Myxococcales/metabolismo , Cromatografía Líquida de Alta Presión , Genes Bacterianos , Metacrilatos/metabolismo , Mutación/genética , Myxococcales/genética , Fenotipo , Espectrofotometría Ultravioleta , Tiazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA