Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824190

RESUMEN

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Asunto(s)
Linaje , Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Telómero , Humanos , Telómero/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Complejo Shelterina/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Masculino , Femenino , Homeostasis del Telómero/genética , Secuencia de Bases , Adulto
2.
Nucleic Acids Res ; 52(4): 1763-1778, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153143

RESUMEN

BG4 is a single-chain variable fragment antibody shown to bind various G-quadruplex (GQ) topologies with high affinity and specificity, and to detect GQ in cells, including GQ structures formed within telomeric TTAGGG repeats. Here, we used ELISA and single-molecule pull-down (SiMPull) detection to test how various lengths and GQ destabilizing base modifications in telomeric DNA constructs alter BG4 binding. We observed high-affinity BG4 binding to telomeric GQ independent of telomere length, although three telomeric repeat constructs that cannot form stable intramolecular GQ showed reduced affinity. A single guanine substitution with 8-aza-7-deaza-G, T, A, or C reduced affinity to varying degrees depending on the location and base type, whereas two G substitutions in the telomeric construct dramatically reduced or abolished binding. Substitution with damaged bases 8-oxoguanine and O6-methylguanine failed to prevent BG4 binding although affinity was reduced depending on lesion location. SiMPull combined with FRET revealed that BG4 binding promotes folding of telomeric GQ harboring a G to T substitution or 8-oxoguanine. Atomic force microscopy revealed that BG4 binds telomeric GQ with a 1:1 stoichiometry. Collectively, our data suggest that BG4 can recognize partially folded telomeric GQ structures and promote telomeric GQ stability.


Asunto(s)
G-Cuádruplex , ADN/genética , ADN/química , Telómero/genética , Anticuerpos/genética
3.
DNA Repair (Amst) ; 122: 103446, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603239

RESUMEN

Understanding how benign nevi can progress to invasive and metastatic Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, USAelanoma is critical for developing interventions and therapeutics for this most deadly form of skin cancer. UV-induced mutations in the telomerase TERT gene promoter occur in the majority of melanomas but fail to prevent telomere shortening despite telomerase upregulation. This suggests additional "hits" are required to enable telomere maintenance. A new study in Science identified somatic variants in the promoter of the gene that encodes telomere shelterin protein TPP1 in human melanomas. These variants show mutational signatures of UV-induced DNA damage and upregulate TPP1 expression, which synergizes with telomerase to lengthen telomeres. This study provides evidence that TPP1 promoter variants are a critical second hit to prevent telomere shortening and promote immortalization of melanoma cells.


Asunto(s)
Melanoma , Telomerasa , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Rayos Ultravioleta/efectos adversos , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Melanoma/genética , Mutación
4.
DNA Repair (Amst) ; 107: 103198, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34371388

RESUMEN

Telomeres at the ends of linear chromosomes are essential for genome maintenance and sustained cellular proliferation, but shorten with each cell division. Telomerase, a specialized reverse transcriptase with its own integral RNA template, compensates for this by lengthening the telomeric 3' single strand overhang. Mammalian telomerase has the unique ability to processively synthesize multiple GGTTAG repeats, by translocating along its product and reiteratively copying the RNA template, termed repeat addition processivity (RAP). This unusual form of processivity is distinct from the nucleotide addition processivity (NAP) shared by all other DNA polymerases. In this review, we focus on the minimally active human telomerase catalytic core consisting of the telomerase reverse transcriptase (TERT) and the integral RNA (TR), which catalyzes DNA synthesis. We review the mechanisms by which oxidatively damaged nucleotides, and anti-viral and anti-cancer nucleotide drugs affect the telomerase catalytic cycle. Finally, we offer perspective on how we can leverage telomerase's unique properties, and advancements in understanding of telomerase catalytic mechanism, to selectively manipulate telomerase activity with therapeutics, particularly in cancer treatment.


Asunto(s)
Telomerasa
5.
Nat Commun ; 11(1): 5288, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082336

RESUMEN

Telomerase is a specialized reverse transcriptase that adds GGTTAG repeats to chromosome ends and is upregulated in most human cancers to enable limitless proliferation. Here, we uncover two distinct mechanisms by which naturally occurring oxidized dNTPs and therapeutic dNTPs inhibit telomerase-mediated telomere elongation. We conduct a series of direct telomerase extension assays in the presence of modified dNTPs on various telomeric substrates. We provide direct evidence that telomerase can add the nucleotide reverse transcriptase inhibitors ddITP and AZT-TP to the telomeric end, causing chain termination. In contrast, telomerase continues elongation after inserting oxidized 2-OH-dATP or therapeutic 6-thio-dGTP, but insertion disrupts translocation and inhibits further repeat addition. Kinetics reveal that telomerase poorly selects against 6-thio-dGTP, inserting with similar catalytic efficiency as dGTP. Furthermore, telomerase processivity factor POT1-TPP1 fails to restore processive elongation in the presence of inhibitory dNTPs. These findings reveal mechanisms for targeting telomerase with modified dNTPs in cancer therapy.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/metabolismo , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Inhibidores Enzimáticos/química , Humanos , Cinética , Modelos Moleculares , Oxidación-Reducción , Complejo Shelterina , Telomerasa/química , Telomerasa/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros
6.
Elife ; 92020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32501800

RESUMEN

Telomerase extends telomere sequences at chromosomal ends to protect genomic DNA. During this process it must select the correct nucleotide from a pool of nucleotides with various sugars and base pairing properties, which is critically important for the proper capping of telomeric sequences by shelterin. Unfortunately, how telomerase selects correct nucleotides is unknown. Here, we determined structures of Tribolium castaneum telomerase reverse transcriptase (TERT) throughout its catalytic cycle and mapped the active site residues responsible for nucleoside selection, metal coordination, triphosphate binding, and RNA template stabilization. We found that TERT inserts a mismatch or ribonucleotide ~1 in 10,000 and ~1 in 14,000 insertion events, respectively. At biological ribonucleotide concentrations, these rates translate to ~40 ribonucleotides inserted per 10 kilobases. Human telomerase assays determined a conserved tyrosine steric gate regulates ribonucleotide insertion into telomeres. Cumulatively, our work provides insight into how telomerase selects the proper nucleotide to maintain telomere integrity.


Asunto(s)
ADN/metabolismo , Nucleótidos/metabolismo , Telomerasa/metabolismo , Animales , Emparejamiento Base/genética , Dominio Catalítico , ADN/química , ADN/genética , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Modelos Moleculares , Nucleótidos/química , Nucleótidos/genética , Unión Proteica , Telomerasa/química , Telomerasa/genética , Tribolium/enzimología , Tribolium/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA