Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2943, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316821

RESUMEN

The global market has a high demand for premium edible grade groundnut, particularly for table use. India, in particular, exhibits significant potential for exporting confectionary grade large seeded groundnut. The environment plays a significant impact in influencing the expression of seed traits, which subsequently affects the confectionary quality of groundnut genotypes. The states of Gujarat and Rajasthan in India are prominent producers of high-quality groundnuts specifically used for confectionary purposes. The current study was conducted with 43 confectionery groundnut genotypes at Junagadh, Gujarat, and Bikaner, Rajasthan, with the goals of understanding genotype-by-environment interaction (GEI) effects and identifying stable, high yielding confectionery quality groundnut genotypes using AMMI and GGE biplot models. Pod yield per plant (PYP), number of pods per plant (NPP), hundred kernel weight (HKW), and shelling percent (SP) were estimated. The interplay between the environment and genotype has had a notable impact on the manifestation of confectionary grade characteristics in peanuts. The results from the Interaction Principal Component Analysis (IPCA) indicate that HKW contributed 76.68% and 18.95% towards the Global Environmental Index (GEI) through IPCA1 and IPCA2, respectively. Similarly, NPP contributed 87.52% and 8.65%, PYP contributed 95.87% and 2.1%, and SP contributed 77.4% and 16.22% towards GEI through IPCA1 and IPCA2, respectively. Based on the ranking of genotypes, the ideal genotypes were PBS 29079B for HKW, PBS 29230 for NPP. The genotypes PBS 29233 and PBS 29230 exhibited superior performance and stability in terms of pod yield, hundred kernel weight, number of pods per plant, and shelling percentage across various sites. These breeding lines have the potential to be developed for the purpose of producing confectionary grade groundnut with larger seeds, in order to fulfil the growing demand for export.


Asunto(s)
Ammi , Interacción Gen-Ambiente , Fitomejoramiento/métodos , India , Genotipo
3.
3 Biotech ; 10(10): 458, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33088655

RESUMEN

Co-occurrence of two devastating foliar-fungal diseases of peanut, viz., late leaf spot (LLS), and rust may cause heavy yield loss besides adversely affecting the quality of kernel and fodder. This study reports the mapping of seven novel stress-related candidate EST-SSRs in a region having major QTLs for LLS and rust diseases using an F2 mapping population (GJG17 × GPBD4) consisting of 328 individuals. The parental polymorphism using 1311 SSRs revealed 84 SSRs (6.4%) as polymorphic and of these 70 SSRs could be mapped on 14 linkage groups (LG). QTL analysis has identified a common QTL (LLSQTL1/RustQTL) for LLS and rust diseases in the map interval of 1.41 cM on A03 chromosome, explaining 47.45% and 70.52% phenotypic variations, respectively. Another major QTL for LLS (LLSQTL1), explaining a 29.06% phenotypic variation was also found on LG_A03. A major rust QTL has been validated which was found harboring R-gene and resistance-related genes having a role in inducing hypersensitive response (HR). Further, 23 linked SSRs including seven novel EST-SSRs were also validated in 177 diverse Indian groundnut genotypes. Twelve genotypes resistant to both LLS and rust were found carrying the common (rust and LLS) QTL region, LLS QTL region, and surrounding regions. These identified and validated candidate EST-SSR markers would be of great use for the peanut breeding groups working for the improvement of foliar-fungal disease resistance.

4.
PLoS One ; 15(8): e0236823, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32745143

RESUMEN

Stem rot, a devastating fungal disease of peanut, is caused by Sclerotium rolfsii. RNA-sequencing approaches have been used to unravel the mechanisms of resistance to stem rot in peanut over the course of fungal infection in resistant (NRCG-CS85) and susceptible (TG37A) genotypes under control conditions and during the course of infection. Out of about 290 million reads, nearly 251 million (92.22%) high-quality reads were obtained and aligned to the Arachis duranensis and Arachis ipaensis genomes with the average mapping of 78.91% and 78.61%, respectively. In total, about 48.6% of genes were commonly regulated, while approximately 21.8% and 29.6% of uniquely regulated genes from A. duranensis and A. ipaensis genomes, respectively, were identified. Several annotated transcripts, such as receptor-like kinases, jasmonic acid pathway enzymes, and transcription factors (TFs), including WRKY, Zinc finger protein, and C2-H2 zinc finger, showed higher expression in resistant genotypes upon infection. These transcripts have a known role in channelizing the downstream of pathogen perception. The higher expression of WRKY transcripts might have induced the systemic acquired resistance (SAR) by the activation of the jasmonic acid defense signaling pathway. Furthermore, a set of 30 transcripts involved in the defense mechanisms were validated with quantitative real-time PCR. This study suggested PAMP-triggered immunity as a probable mechanism of resistance, while the jasmonic acid signaling pathway was identified as a possible defense mechanism in peanut. The information generated is of immense importance in developing more effective ways to combat the stem rot disease in peanut.


Asunto(s)
Agaricales/patogenicidad , Arachis/genética , Enfermedades de las Plantas , Inmunidad de la Planta/genética , Arachis/microbiología , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/genética , Genes de Plantas , Genotipo , Oxilipinas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , RNA-Seq , Transducción de Señal/genética , Factores de Transcripción/genética
5.
3 Biotech ; 9(6): 243, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31168436

RESUMEN

Peanut is one of the most important oilseed crops grown worldwide. In this study, the mutant ahFAD2 alleles conferring high oleic (HO) content are introgressed into an elite Indian cultivar GPBD4 which is also resistant to the foliar fungal diseases like rust and late leaf spot (LLS). The allele-specific PCR (AS-PCR) and cleaved amplified polymorphic sequences (CAPS) assays were used for the marker-assisted backcross (MABC) approach and 64 HO introgression lines (ILs) were generated. These ILs were tested for the FA compositions under the glasshouse and field conditions. The oleic acid and linoleic acid contents in the ILs were recorded to be between 68.94-82.33% and 1.74-10.87%, respectively, under glasshouse and 67.04-81.71% and 2.00-15.66%, respectively, under field conditions. The increase in the oleic acid content of the ILs over its recurrent parent (RP) was recorded to the tune of 28.78-53.80% and 33.70-62.96% under glasshouse and field conditions, respectively, indicating the stable expression of ahFAD2B gene in two different environments. On the contrary, linoleic acid showed 56.47-93.03% and 40.02-92.34% reduction in the ILs over its RP under glasshouse and field conditions, respectively. These ILs with a healthy FA profile can meet not only the nutritional requirements of a health-conscious society but also the industrial demands for better shelf life of oil and its products.

6.
Theor Appl Genet ; 132(4): 1001-1016, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30539317

RESUMEN

KEY MESSAGE: Genetic mapping identified large number of epistatic interactions indicating the complex genetic architecture for stem rot disease resistance. Groundnut (Arachis hypogaea) is an important global crop commodity and serves as a major source of cooking oil, diverse confectionery preparations and livestock feed. Stem rot disease caused by Sclerotium rolfsii is the most devastating disease of groundnut and can cause up to 100% yield loss. Genomic-assisted breeding (GAB) has potential for accelerated development of stem rot resistance varieties in short period with more precision. In this context, linkage analysis and quantitative trait locus (QTL) mapping for resistance to stem rot disease was performed in a bi-parental recombinant inbred line population developed from TG37A (susceptible) × NRCG-CS85 (resistant) comprising of 270 individuals. Genotyping-by-sequencing approach was deployed to generate single nucleotide polymorphism (SNP) genotyping data leading to development of a genetic map with 585 SNP loci spanning map distance of 2430 cM. QTL analysis using multi-season phenotyping and genotyping data could not detect any major main-effect QTL but identified 44 major epistatic QTLs with phenotypic variation explained ranging from 14.32 to 67.95%. Large number interactions indicate the complexity of genetic architecture of resistance to stem rot disease. A QTL of physical map length 5.2 Mb identified on B04 comprising 170 different genes especially leucine reach repeats, zinc finger motifs and ethyleneresponsive factors, etc., was identified. The identified genomic regions and candidate genes will further validate and facilitate marker development to deploy GAB for developing stem rot disease resistance groundnut varieties.


Asunto(s)
Arachis/genética , Ascomicetos/fisiología , Mapeo Cromosómico/métodos , Epistasis Genética , Técnicas de Genotipaje/métodos , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología , Análisis de Secuencia de ADN/métodos , Arachis/anatomía & histología , Arachis/inmunología , Arachis/microbiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Ligamiento Genético , Sitios Genéticos , Endogamia , Fenotipo , Enfermedades de las Plantas/genética , Tallos de la Planta/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA