Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pest Manag Sci ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597427

RESUMEN

BACKGROUND: Most studies on efficacy of fungal pathogens and predatory mites against Tetranychus urticae have been done on individual species in the laboratory. We evaluated fungi and predatory mites separately and together against glasshouse populations of T. urticae on chrysanthemum plants. First, effectiveness of the fungal pathogens Beauveria bassiana (Bb88) and Metarhizium anisopliae (Ma129) was compared; then, effectiveness of the predatory mites Phytoseiulus persimilis and Neoseiulus californicus. Based on the results, N. californicus and isolate Ma129 were selected and evaluated in combination. In all experiments, treatment effects were assessed for eggs and motile stages of T. urticae. RESULTS: The first experiment showed no significant effect of either fungal isolate on T. urticae populations, except on plants initially infested with 20 mites, where more eggs were found in the control compared to the fungal treatments. In the second experiment, both predatory mites were equally effective at reducing T. urticae populations compared with the control, regardless of initial T. urticae population density. The last experiment demonstrated that populations of T. urticae were reduced most when M. anisopliae (Ma129) and N. californicus were applied together, compared with the control and when each natural enemy was applied separately. CONCLUSIONS: Metarhizium anisopliae (Ma129) and B. bassiana (Bb88) isolates did not have a significant effect on reducing T. urticae populations. Both predatory mites reduced T. urticae populations, regardless of T. urticae density. Combined application of M. anisopliae (Ma129) and N. californicus were more effective against T. urticae than the control or when each agent was applied separately. © 2024 Society of Chemical Industry.

2.
Exp Appl Acarol ; 89(2): 215-230, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36808042

RESUMEN

Berries comprise an economically important group of crops. Knowledge about their arthropod pests and biological control agents is important in the development of more efficient integrated pest management programs. Identification of potential biocontrol agents based solely on morphological attributes may be difficult and so molecular techniques should be incorporated. Here we studied the species diversity of predatory mites in the family Phytoseiidae, and how this diversity is affected by the berry species and crop management approaches, specifically pesticide application regimes. We sampled 15 orchards in the State of Michoacán, Mexico. Sites were selected based on berry species and pesticide regimes. Mite identification was achieved by combining morphological attributes and molecular techniques. Phytoseiidae diversity was compared amongst blackberry, raspberry and blueberry. Subsequently we studied the effect of berry species and pesticide regime on the abundance of the most prevalent phytoseiid species. We identified 11 species of phytoseiid mites. The greatest species diversity was found in raspberry, followed by blackberry and then blueberry. The most abundant species were Typhlodromalus peregrinus and Neoseiulus californicus. The abundance of T. peregrinus was significantly affected by pesticide application but not by berry species. In contrast, abundance of N. californicus was significantly affected by berry species but not by pesticide regime.


Asunto(s)
Ácaros y Garrapatas , Ácaros , Plaguicidas , Animales , Frutas , Control de Plagas , Conducta Predatoria , Control Biológico de Vectores/métodos
3.
J Insect Sci ; 22(6)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508353

RESUMEN

Anthonomus eugenii Cano (Coleoptera: Curculionidae) is a key pest of cultivated peppers (Capsicum species) in tropical and subtropical America. Here we evaluated the effect of five pepper varieties on the susceptibility of A. eugenii to the parasitoids Bracon sp. (Hymenoptera: Braconidae), Eupelmus cushmani (Crawford) (Hymenoptera: Eupelmidae), and Jaliscoa hunteri Crawford (Hymenoptera: Pteromalidae). Potential parasitism was estimated by comparative analysis of parasitoid ovipositor size and the depth to which host larvae develop inside the fruit. Highest potential parasitism rates were achieved by Bracon sp. and E. cushmani on árbol and habanero peppers (84-99%) while the lowest rates were achieved by J. hunteri on serrano, bell, and jalapeño (7-18%). To validate potential parasitism rates, the actual parasitism rate by Bracon sp. and J. hunteri on three varieties of peppers was assessed. Actual parasitism rates of A. eugenii larvae in árbol were similar for Bracon sp. and J. hunteri (33%), while on bell and jalapeño Bracon sp. achieved 24% and 13% parasitism and J. hunteri achieved 14% and 8%, respectively. In most cases, actual parasitism was lower than estimated potential parasitism, although the latter had a notable predictive power (predicted R2 = 0.84). Results showed that the host was more vulnerable on small-fruited varieties because larvae were closer to the pericarp and could be reached by parasitoid ovipositors; likewise, in varieties with little placenta and seed, some larvae fed in the pericarp, where they were more vulnerable.


Asunto(s)
Capsicum , Himenópteros , Gorgojos , Animales , Capsicum/clasificación , Capsicum/parasitología , Himenópteros/fisiología , Larva/parasitología , Gorgojos/parasitología , Interacciones Huésped-Parásitos
4.
J Econ Entomol ; 113(3): 1576-1581, 2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31971566

RESUMEN

The incidences of Citrus leprosis virus C (CiLV-C) and Orchid fleck dichorhavirus Citrus strain (OFV-citrus) were determined in field populations of Brevipalpus mites from 15 citrus-producing states in Mexico. Mites were collected from orange, grapefruit, mandarin, lime, and sweet lime orchards. Brevipalpus yothersi (Baker) (Trombidiformes: Tenuipalpidae) was the most abundant species followed by Brevipalpus californicus (Banks) (Trombidiformes: Tenuipalpidae), which confirmed previous reports. The viruses CiLV-C and OFV-citrus were found in both mite species. The incidence of CiLV-C, OFV-citrus and both viruses simultaneously (CiLV-C and OFV-citrus) was 17.2, 10.3, and 3.4% (n = 116) for B. yothersi, and 12.5, 20.8, and 4.1% (n = 24) for B. californicus, respectively. No significant difference was found when the incidence of these viruses was compared between both mite species. The importance of our results in relation to the epidemiology of leprosis is discussed.


Asunto(s)
Citrus , Ácaros , Animales , Incidencia , México , Enfermedades de las Plantas , Cemento de Fosfato de Zinc
5.
J Econ Entomol ; 112(6): 2569-2576, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31310311

RESUMEN

Transmission of the virus, Citrus leprosis virus C (CiLV-C) (Cilevirus) by Brevipalpus yothersi Baker, on different citrus species was evaluated under greenhouse conditions. First, the relationship between acquisition access periods (AAPs; 1, 12, 24, 36, and 48 h) and virus concentration in mites was determined. Second, the ability of B. yothersi to transmit CiLV-C to orange, mandarin, grapefruit, and lime trees was measured. We then assessed the establishment of mites on the different citrus species as measured by their population increase on each species. We found no relationship between AAPs and virus load in mites. The virus was found in all mites tested but there was no difference in virus quantities among the treatments. We selected an AAP of 24 h for the transmission experiment. Brevipalpus yothersi transmitted the virus to all citrus species evaluated, but susceptibility was different. The number of infected leaves was greater on orange and mandarin compared with grapefruit and lime. Furthermore, populations of B. yothersi successfully established on orange and mandarin, but not on grapefruit and lime trees. The implications of our results in the virus-mite-citrus plant relationship are discussed.


Asunto(s)
Citrus paradisi , Citrus , Ácaros , Virus de Plantas , Animales , Enfermedades de las Plantas , Hojas de la Planta
6.
Environ Entomol ; 46(2): 274-283, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087579

RESUMEN

Adaptation to different host plants can lead to host-associated differentiation (HAD). The mites Oligonychus perseae and Oligonychus punicae have a broad range of host plants, but, to date, records of them coexisting sympatrically had only been reported on avocado. However, our field observations showed both species coexisting on host plants other than avocado. The lack of previous records of these mites on the host plants studied here suggests only recent divergence to new host plant species. Previous studies showed that O. punicae had a limited migration capacity compared with O. perseae, suggesting that O. punicae is more likely to develop a close host plant relationship leading to HAD. Adults of both species were collected from trees hosting both mite species. Three genera of host plants considered were Persea, Salix, and Alnus; two species within one genus were Alnus jorullensis and Alnus acuminata; and three varieties within one species were Persea americana var. Fuerte, var. Hass, and var. Criollo, a noncommercial variety. Using sequence data from a segment of the mitochondrial cytochrome oxidase subunit I, the phylogenetic relationships and genetic population structure of both mite species in relation to the host plant were determined. Oligonychus perseae populations showed a significant population structure in relation to host plant at the species and genus level, but there was no effect of variety. In contrast, host plant explained none of the genetic variation among O. punicae populations. The potential role of coexistence mechanisms in the contrasting genetic population structure of both mite species is discussed.


Asunto(s)
Alnus , Cadena Alimentaria , Variación Genética , Persea , Salix , Tetranychidae/fisiología , Animales , Proteínas de Artrópodos/genética , Complejo IV de Transporte de Electrones/genética , Filogenia , Análisis de Secuencia de ADN , Simpatría , Tetranychidae/genética
7.
PLoS One ; 11(10): e0164552, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27736923

RESUMEN

We studied species diversity and genetic variation among populations of Brevipalpus mites from four species of citrus host plants. We sampled mites on orange, lime, grapefruit and mandarin trees from orchards at six localities distributed in the five most important citrus producing states in Mexico. Genetic variation among citrus host plants and localities were assessed by analysis of nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI). Both Brevipalpus yothersi and B. californicus were found at these sites, and B. yothersi was the most abundant species found on all citrus species and in all localities sampled. B. californicus was found mainly on orange and mandarin and only in two of the states sampled. AMOVA and haplotype network analyses revealed no correlation between B. yothersi genetic population structure and geographical origin or citrus host plant species. Considering that a previous study reported greater genetic diversity in B. yothersi populations from Brazil than we observed in Mexico, we discuss the possibility that the Mexican populations may have originated in the southern region of America.


Asunto(s)
Citrus/parasitología , Complejo I de Transporte de Electrón/genética , Ácaros/clasificación , Ácaros/genética , Análisis de Secuencia de ADN/métodos , Animales , Brasil , Citrus/clasificación , Femenino , Variación Genética , Haplotipos , México , Ácaros/enzimología , Filogenia , Filogeografía , Especificidad de la Especie
8.
J Gen Virol ; 89(Pt 7): 1685-1689, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18559939

RESUMEN

Deformed wing virus (DWV) induces wing deformation when bees are infected during their pupal development. Field observations and laboratory experiments suggest that the mite Varroa destructor is a vector of the virus. Moreover, it has been stated that DWV replicates within this mite. In order to understand the role of V. destructor in the transmission of DWV, the objective of this work was to locate the sites of retention and/or replication of DWV within the mite by immunohistochemistry. There was no evidence that DWV was replicating in the mite as no tissues showed specific antibody binding to DWV. Also, there were no specific structures that could be suggested as retention sites. DWV was found only in the midgut lumen of V. destructor in structures resembling large, dense spheres, which were presumably faecal pellets.


Asunto(s)
Ácaros/virología , Virus ARN/química , Proteínas Virales/análisis , Virión/química , Animales , Heces/virología , Tracto Gastrointestinal/virología , Inmunohistoquímica , Virus ARN/inmunología , Proteínas Virales/inmunología , Virión/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA