RESUMEN
Proneural factors of the basic helix-loop-helix family coordinate neurogenesis and neurodifferentiation. Among them, NEUROG2 and NEUROD2 subsequently act to specify neurons of the glutamatergic lineage. Disruption of these factors, their target genes and binding DNA motifs has been linked to various neuropsychiatric disorders. Proneural factors bind to specific DNA motifs called E-boxes (hexanucleotides of the form CANNTG, composed of two CAN half sites on opposed strands). While corticogenesis heavily relies on E-box activity, the collaboration of proneural factors on different E-box types and their chromatin remodeling mechanisms remain largely unknown. Here, we conducted a comprehensive analysis using chromatin immunoprecipitation followed by sequencing (ChIP-seq) data for NEUROG2 and NEUROD2, along with time-matched single-cell RNA-seq, ATAC-seq and DNA methylation data from the developing mouse cortex. Our findings show that these factors are highly enriched in transiently active genomic regions during intermediate stages of neuronal differentiation. Although they primarily bind CAG-containing E-boxes, their binding in dynamic regions is notably enriched in CAT-CAT E-boxes (i.e. CATATG, denoted as 5'3' half sites for dimers), which undergo significant DNA demethylation and exhibit the highest levels of evolutionary constraint. Aided by HT-SELEX data reanalysis, structural modeling and DNA footprinting, we propose that these proneural factors exert maximal chromatin remodeling influence during intermediate stages of neurogenesis by binding as homodimers to CAT-CAT motifs. This study provides an in-depth integrative analysis of the dynamic regulation of E-boxes during neuronal development, enhancing our understanding of the mechanisms underlying the binding specificity of critical proneural factors.
RESUMEN
The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.
RESUMEN
Vast quantities of multi-omic data have been produced to characterize the development and diversity of cell types in the cerebral cortex of humans and other mammals. To more fully harness the collective discovery potential of these data, we have assembled gene-level transcriptomic data from 188 published studies of neocortical development, including the transcriptomes of ~30 million single-cells, extensive spatial transcriptomic experiments and RNA sequencing of sorted cells and bulk tissues: nemoanalytics.org/landing/neocortex. Applying joint matrix decomposition (SJD) to mouse, macaque and human data in this collection, we defined transcriptome dynamics that are conserved across mammalian neurogenesis and which elucidate the evolution of outer, or basal, radial glial cells. Decomposition of adult human neocortical data identified layer-specific signatures in mature neurons and, in combination with transfer learning methods in NeMO Analytics, enabled the charting of their early developmental emergence and protracted maturation across years of postnatal life. Interrogation of data from cerebral organoids demonstrated that while broad molecular elements of in vivo development are recapitulated in vitro, many layer-specific transcriptomic programs in neuronal maturation are absent. We invite computational biologists and cell biologists without coding expertise to use NeMO Analytics in their research and to fuel it with emerging data (carlocolantuoni.org).
RESUMEN
Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. We performed multiregional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry and then integrated these data with complementary glycotranscriptomic data. We found that, in primates, the brain N-glycome has diverged more rapidly than the underlying transcriptomic framework, providing a means for rapidly generating additional interspecies diversity. Our data suggest that brain N-glycome evolution in hominids has been characterized by an overall increase in complexity coupled with a shift toward increased usage of α(2-6)-linked N-acetylneuraminic acid. Moreover, interspecies differences in the cell type expression pattern of key glycogenes were identified, including some human-specific differences, which may underpin this evolutionary divergence. Last, by comparing the prenatal and adult human brain N-glycomes, we uncovered region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain.
Asunto(s)
Encéfalo , Adulto , Humanos , Ratas , Animales , Glicosilación , Espectrometría de MasasRESUMEN
During early telencephalic development, intricate processes of regional patterning and neural stem cell (NSC) fate specification take place. However, our understanding of these processes in primates, including both conserved and species-specific features, remains limited. Here, we profiled 761,529 single-cell transcriptomes from multiple regions of the prenatal macaque telencephalon. We deciphered the molecular programs of the early organizing centers and their cross-talk with NSCs, revealing primate-biased galanin-like peptide (GALP) signaling in the anteroventral telencephalon. Regional transcriptomic variations were observed along the frontotemporal axis during early stages of neocortical NSC progression and in neurons and astrocytes. Additionally, we found that genes associated with neuropsychiatric disorders and brain cancer risk might play critical roles in the early telencephalic organizers and during NSC progression.
Asunto(s)
Células-Madre Neurales , Neurogénesis , Telencéfalo , Animales , Femenino , Embarazo , Macaca , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuronas/fisiología , Telencéfalo/citología , Telencéfalo/embriología , Neurogénesis/genética , Péptido Similar a Galanina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Trastornos Mentales/genética , Enfermedades del Sistema Nervioso/genética , Neoplasias Encefálicas/genéticaRESUMEN
Tauopathies are a group of neurodegenerative diseases characterized by the pathological aggregation of hyperphosphorylated tau in neurons and glia. Primary tauopathies are not uncommon in humans but exceptional in other species. We evaluate the clinical, neuropathological, and genetic alterations related to tau pathology in 16 cats aged from 1 to 21 years with different clinical backgrounds. Interestingly, a 10-year-old female cat presented a six-year progressive history of mental status and gait abnormalities. The imaging study revealed generalized cortical atrophy. Due to the poor prognosis, the cat was euthanatized at the age of ten. Neuropathological lesions were characterized by massive neuronal loss with marked spongiosis and associated moderate reactive gliosis in the parietal cortex, being less severe in other areas of the cerebral cortex, and the loss of Purkinje cells of the cerebellum. Immunohistochemical methods revealed a 4R-tauopathy with granular pre-tangles in neurons and coiled bodies in oligodendrocytes. Deposits were recognized with several phospho-site antibodies (4Rtau, tau5, AT8, PFH, tau-P Thr181, tau-P-Ser 262, tau-P Ser 422) and associated with increased granular expression of active tau kinases (p38-P Thr180/Tyr182 and SAPK/JNK-P Thr138/Thr185). The genetic study revealed well-preserved coding regions of MAPT. No similar alterations related to tau pathology were found in the other 15 cats processed in parallel. To our knowledge, this is the first case reporting a primary 4R-tauopathy with severe cerebral and Purkinje cell degeneration in an adult cat with neurological signs starting at a young age.
RESUMEN
The interaction between transcription factors (TFs) and DNA is the core process that determines the state of a cell's transcriptome [...].
Asunto(s)
ADN , Factores de Transcripción , Sitios de Unión , Factores de Transcripción/metabolismo , Unión Proteica/genética , ADN/metabolismo , Variación Genética , Transcripción GenéticaRESUMEN
Primate genomics holds the key to understanding fundamental aspects of human evolution and disease. However, genetic diversity and functional genomics data sets are currently available for only a few of the more than 500 extant primate species. Concerted efforts are under way to characterize primate genomes, genetic polymorphism and divergence, and functional landscapes across the primate phylogeny. The resulting data sets will enable the connection of genotypes to phenotypes and provide new insight into aspects of the genetics of primate traits, including human diseases. In this Review, we describe the existing genome assemblies as well as genetic variation and functional genomic data sets. We highlight some of the challenges with sample acquisition. Finally, we explore how technological advances in single-cell functional genomics and induced pluripotent stem cell-derived organoids will facilitate our understanding of the molecular foundations of primate biology.
Asunto(s)
Evolución Molecular , Genómica , Animales , Humanos , Genómica/métodos , Primates/genética , Genoma , Filogenia , Variación GenéticaRESUMEN
Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. Here, we performed multi-regional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry, then integrated these data with complementary glycotranscriptomic data. We found that in primates the brain N-glycome has evolved more rapidly than the underlying transcriptomic framework, providing a mechanism for generating additional diversity. We show that brain N-glycome evolution in hominids has been characterized by an increase in complexity and α(2-6)-linked N-acetylneuraminic acid along with human-specific cell-type expression of key glycogenes. Finally, by comparing the prenatal and adult human brain N-glycome, we identify region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain. One-Sentence Summary: Evolution of the human brain N-glycome has been marked by an increase in complexity and a shift in sialic acid linkage.
RESUMEN
Neurodegenerative and neuropsychiatric disorders (ND-NPs) are multifactorial, polygenic and complex behavioral phenotypes caused by brain abnormalities. Large-scale collaborative efforts have tried to identify the genetic architecture of these conditions. However, the specific and shared underlying molecular pathobiology of brain illnesses is not clear. Here, we examine transcriptome-wide characterization of eight conditions, using a total of 2,633 post-mortem brain samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD), Progressive Supranuclear Palsy (PSP), Pathological Aging (PA), Autism Spectrum Disorder (ASD), Schizophrenia (Scz), Major Depressive Disorder (MDD), and Bipolar Disorder (BP)-in comparison with 2,078 brain samples from matched control subjects. Similar transcriptome alterations were observed between NDs and NPs with the top correlations obtained between Scz-BP, ASD-PD, AD-PD, and Scz-ASD. Region-specific comparisons also revealed shared transcriptome alterations in frontal and temporal lobes across NPs and NDs. Co-expression network analysis identified coordinated dysregulations of cell-type-specific modules across NDs and NPs. This study provides a transcriptomic framework to understand the molecular alterations of NPs and NDs through their shared- and specific gene expression in the brain.
RESUMEN
The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.
Asunto(s)
Corteza Prefontal Dorsolateral , Evolución Molecular , Primates , Somatostatina , Tirosina 3-Monooxigenasa , Adulto , Animales , Dopamina/metabolismo , Corteza Prefontal Dorsolateral/citología , Corteza Prefontal Dorsolateral/metabolismo , Humanos , Pan troglodytes , Primates/genética , Análisis de la Célula Individual , Somatostatina/genética , Somatostatina/metabolismo , Transcriptoma , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from EpsteinBarr virus (EBV), human cytomegalovirus (HCMV), and VaricellaZoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Asunto(s)
Herpesviridae , Antígenos de Histocompatibilidad Clase I , Péptidos , Variación Genética , Herpesviridae/genética , Herpesviridae/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos/genéticaRESUMEN
Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes.
Asunto(s)
Drosophila , Genoma , Adaptación Fisiológica/genética , Animales , Drosophila/genética , Genómica , Humanos , FilogeniaRESUMEN
The hippocampal-entorhinal system supports cognitive functions, has lifelong neurogenic capabilities in many species, and is selectively vulnerable to Alzheimer's disease. To investigate neurogenic potential and cellular diversity, we profiled single-nucleus transcriptomes in five hippocampal-entorhinal subregions in humans, macaques, and pigs. Integrated cross-species analysis revealed robust transcriptomic and histologic signatures of neurogenesis in the adult mouse, pig, and macaque but not humans. Doublecortin (DCX), a widely accepted marker of newly generated granule cells, was detected in diverse human neurons, but it did not define immature neuron populations. To explore species differences in cellular diversity and implications for disease, we characterized subregion-specific, transcriptomically defined cell types and transitional changes from the three-layered archicortex to the six-layered neocortex. Notably, METTL7B defined subregion-specific excitatory neurons and astrocytes in primates, associated with endoplasmic reticulum and lipid droplet proteins, including Alzheimer's disease-related proteins. This resource reveals cell-type- and species-specific properties shaping hippocampal-entorhinal neurogenesis and function.
Asunto(s)
Macaca , Transcriptoma , Animales , Proteína Doblecortina , Hipocampo/patología , Humanos , Ratones , Neurogénesis/genética , PorcinosRESUMEN
The authors wish to make the following correction to this paper [...].
RESUMEN
The prefrontal cortex (PFC) and its connections with the mediodorsal thalamus are crucial for cognitive flexibility and working memory1 and are thought to be altered in disorders such as autism2,3 and schizophrenia4,5. Although developmental mechanisms that govern the regional patterning of the cerebral cortex have been characterized in rodents6-9, the mechanisms that underlie the development of PFC-mediodorsal thalamus connectivity and the lateral expansion of the PFC with a distinct granular layer 4 in primates10,11 remain unknown. Here we report an anterior (frontal) to posterior (temporal), PFC-enriched gradient of retinoic acid, a signalling molecule that regulates neural development and function12-15, and we identify genes that are regulated by retinoic acid in the neocortex of humans and macaques at the early and middle stages of fetal development. We observed several potential sources of retinoic acid, including the expression and cortical expansion of retinoic-acid-synthesizing enzymes specifically in primates as compared to mice. Furthermore, retinoic acid signalling is largely confined to the prospective PFC by CYP26B1, a retinoic-acid-catabolizing enzyme, which is upregulated in the prospective motor cortex. Genetic deletions in mice revealed that retinoic acid signalling through the retinoic acid receptors RXRG and RARB, as well as CYP26B1-dependent catabolism, are involved in proper molecular patterning of prefrontal and motor areas, development of PFC-mediodorsal thalamus connectivity, intra-PFC dendritic spinogenesis and expression of the layer 4 marker RORB. Together, these findings show that retinoic acid signalling has a critical role in the development of the PFC and, potentially, in its evolutionary expansion.
Asunto(s)
Organogénesis , Corteza Prefrontal/embriología , Corteza Prefrontal/metabolismo , Tretinoina/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral , Regulación hacia Abajo , Femenino , Humanos , Macaca mulatta , Masculino , Ratones , Pan troglodytes , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/citología , Receptores de Ácido Retinoico/deficiencia , Receptor gamma X Retinoide/deficiencia , Transducción de Señal , Sinapsis/metabolismo , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/metabolismoRESUMEN
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA's shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Humanos , Unión Proteica , Activación TranscripcionalRESUMEN
We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of â¼23 neuropeptide genes and â¼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.
Asunto(s)
Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Larva/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Motivos de Nucleótidos/genética , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.